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Based on the self-consistent signal-to-noise analysis (SCSNA) capable of dealing with analog neural
networks with a wide class of transfer functions, enhancement of the storage capacity of associative
memory and the related statistical properties of neural networks are studied for random memory pat-
terns. Two types of transfer functions with the threshold parameter 6 are considered, which are derived
from the sigmoidal one to represent the output of three-state neurons. Neural networks having a mono-
tonically increasing transfer function FM, FM(u)=sgnu (|u| > 0), FM(u)=0 (|u| < 6), are shown to make
it impossible for the spin-glass state to coexist with retrieval states in a certain parameter region of 6 and
a (loading rate of memory patterns), implying the reduction of the number of spurious states. The
behavior of the storage capacity with changing 6 is qualitatively the same as that of the Ising spin neural
networks with varying temperature. On the other hand, the nonmonotonic transfer function FNM,
FNM(y)=sgnu (|u| <8), F’™(u)=0 (Ju| > 6) gives rise to remarkable features in several respects. First,
it yields a large enhancement of the storage capacity compared with the Amit-Gutfreund-Sompolinsky
(AGS) value: with decreasing 6 from 0= oo, the storage capacity a, of such a network is increased from
the AGS value (=0.14) to attain its maximum value of ~0.42 at 6=0.7 and afterwards is decreased to
vanish at 6=0. Whereas for 6 1 the storage capacity a. coincides with the value @, determined by the
SCSNA as the upper bound of a ensuring the existence of retrieval solutions, for 6 <1 the o, is shown to
differ from the @, with the result that the retrieval solutions claimed by the SCSNA are unstable for
a. <a<da,. Second, in the case of 8 <1 the network can exhibit a new type of phase which appears as a
result of a phase transition with respect to the non-Gaussian distribution of the local fields of neurons:
the standard type of retrieval state with »70 (i.e., finite width of the local field distribution), which is im-
plied by the order-parameter equations of the SCSNA, disappears at a certain critical loading rate ay,
and for a < g, a qualitatively different type of retrieval state comes into existence in which the width of
the local field distribution vanishes (i.e., » =0%). As a consequence, memory retrieval without errors be-
comes possible even in the saturation limit a7=0. Results of the computer simulations on the statistical
properties of the novel phase with a < a, are shown to be in satisfactory agreement with the theoretical
results. The effect of introducing self-couplings on the storage capacity is also analyzed for the two types
of networks. It is conspicuous for the networks with FNM, where the self-couplings increase the stability
of the retrieval solutions of the SCSNA with small values of 0, leading to a remarkable enhancement of
the storage capacity.
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1. INTRODUCTION

The theory of neural networks with symmetric connec-
tions as content addressable memory has enjoyed much
progress for the past decade [1-5]. Statistical mechanics
of spin glasses has contributed a lot to obtaining the
knowledge of equilibrium properties of the symmetric
networks associated with memory recall dynamics [6],
particularly in the case of recurrent-type networks of for-
mal neurons subject to stochastic updating [3-5,7].
Among the quantities characterizing network perfor-
mances are the storage capacity and the number of spuri-
ous states. The storage capacity of the stochastic net-
works or the Boltzmann machine is given as the limit of
the loading rate for the existence of the ergodic com-
ponent called the retrieval state in the language of ther-
modynamic phase transitions [7].
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Analog neural networks [1(b),2] with deterministic up-
dating, in which output of each neuron taking on con-
tinuous values is described by a transfer function, seemed
difficult to deal with using a statistical mechanical ap-
proach based on the spin-glass theory. Evaluating pre-
cisely the storage capacity of the analog neural networks
was a key issue together with understanding how the per-
formances of analog neural networks compare with those
of the Boltzmann machine, although it was considered
that no qualitative differences between the two types of
networks should be expected, as long as sigmoidal-type
transfer functions are used.

Recently those problems were solved by the authors
[8~10] and other researchers [11-13] as well, and an ad-
vantage of using analog neural networks for associative
memory was discussed extensively in terms of the storage
capacity [8,11] and the density of spurious states of the

867 ©1993 The American Physical Society



868 M. SHIINO AND T. FUKAI 48

networks [9,10,12]. In particular, it was found that the
analog neural networks with the transfer function
F(u)=tanhBu are closely related with the stochastic
neural networks of Ising spin type, as is expected, and
that the difference between the two can just be attributed
to the matter of the so-called Onsager reaction field term
[14] which appears in the Thouless-Anderson-Palmer
(TAP) equation for the Ising spin neural networks [15].
In other words, the naive TAP equation without that
term, by definition, for the analog neural networks, in
turn, results in the appearance of an output proportional
term [8,16] in the local field which is involved in the set
of equations for the order parameters. It is the output
proportional term that makes the distribution of the local
field non-Gaussian and leads to an enhancement of the
storage capacity of the analog neural networks [8,16].

The structure of the key term characteristic to analog
neural networks can be properly understood by following
the recently developed systematic method of self-
consistent signal-to-noise analysis [16] (hereafter referred
to as SCSNA). The SCSNA may be viewed as an exten-
sion of probability theoretic signal-to-noise analysis
[17-19] to the case of evaluating the storage capacity
with small retrieval errors allowed [20,21]. The essence
of the method is to properly extract the noise part of the
local field experienced by a neuron of the networks in the
course of the “renormalization” process. The SCSNA
can deal with analog neural networks with a wide class of
transfer functions [22] and moreover was shown to be ap-
plicable to networks with a certain type of asymmetric
connections [16].

It will be of interest to study, by taking advantage of
the SCSNA, the problem of how the storage capacity is
correlated with or determined by the shape of the
transfer function of neurons. In the present paper we in-
vestigate the possibility of expecting an enhancement of
the storage capacity of deterministic analog neural net-
works by taking transfer functions corresponding to the
output of three-state neurons which can be assumed to
take on values —1, O, and 1. The present work is
motivated by an attempt to gain insight into the issue of
which part of the transfer function for the typical binary
neurons F(u)=sgn(u) is responsible for the sustaining of
retrieval states for associative memory. To this end, it
will be convenient to work with two kinds of odd transfer
functions describing three-state neurons which are
discriminated by the region of membrane potential giving
null output, D,. One is the case in which D, contains
u=0, ie., FM(u)=sgnu (lu|>8), FM(u)=0 (|lu|<0)
and hence the center-cutoff-type transfer function FM is a
monotonically increasing function. The parameter 6
should be expected to play the role of temperature for the
Ising spin neural networks, with the larger 6 giving the
smaller storage capacity [23]. We would like to see if
there is any other outcome to be seen of getting the out-
put activity of neurons diminished to O around u =0.

The other type of transfer function we consider is the
one for which D, extends over up to u=c, ie,
FM(y)=sgnu (lu|<80), FF"M(,)=0 (|u|>6). Our pri-
mary concern is with investigating to what extent the
cutting off of the output activity of neurons with the in-

put beyond a certain level will affect the network perfor-
mances. In such an end-cutoff-type transfer function
case, it is of particular interest to see what will happen to
the networks with 6 <1, in view of the fact that in the
case of the Hopfield model with F(u)=sgn(u) for a finite
number of random memory patterns F(1)=1 is required
for the retrieval state to be equilibrium points of the up-
dating dynamics.

Using the SCSNA we have found several interesting
features of the memory recall properties of the networks
with the above-mentioned two types of transfer functions.
In the case of the center-cutoff-type transfer functions,
spin-glass states manifest themselves through a first kind
of phase transition in the phase diagram of a-6 plane un-
like the continuous transition in the commonly known
case [7], and hence for small values of a there exist re-
trieval states which do not make the spin-glass state coex-
ist. The storage capacity a,., on the other hand, behaves
qualitatively the same way when 6 is changed as that of
the standard analog neural networks having sigmoidal-
type transfer functions does with its analog gain changed
[8,11].

By contrast, for the networks with the end-cutoff-type
transfer functions, a remarkable enhancement of the
storage capacity ensues. As 6 is decreased from infinity,
the storage capacity «a.(8) increases, surpassing the
Amit-Gutfreund-Sompolinsky (AGS) value of =~0.14 un-
til it attains a maximum value of =~0.42 at 6=0.7, and
decreases to O at vanishing 6. While the a.(6) with 6% 1
can be determined by the SCSNA as the limit value of a
ensuring the existence of fixed-point-type attractors of
the order-parameter equations representing retrieval
states, the storage capacity for 6 S 1 is given as the value
of a yielding the onset of instability of the SCSNA-
retrieval state. Due to the nonmonotonic transfer func-
tion, the existence of a Liapunov function, in general, is
no longer expected. In fact, the onset of instability for
small 6 is related to the appearance of oscillatory
behavior of the networks, which is confirmed by numeri-
cal simulations.

Of particular interest is the occurrence of a kind of
phase transition at a certain loading rate ay(6) when
6 <1, with respect to the width of the non-Gaussian dis-
tribution of the local fields of neurons. The transition
arises from the vanishing at o of the standard type of
solutions to the order-parameter equations of the SCSNA
such that with a approaching a, from above, r tends to
zero and the standard type of solution with »0 for the
retrieval states no longer exists for @ <a, where V'r is
proportional to the width of the local field distribution.
When a =a,, noise part in the local field vanishes and
r=0" holds. As a consequence, below the transition
point a perfect memory recall with the ‘“tolerance” over-
lap g =1 can be ensured. The occurrence of such a phase
transition is closely related not only to the existence of an
output proportional term characteristic to analog neural
networks in the local field, but also to the shape of an’
“effective” transfer function or renormalized output
claimed by the SCSNA in such that it is likely, in general,
to require discontinuous jumps as a decreasing function
of noise z in the local field.
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From the viewpoint of the enhancement of the storage
capacity, it is also of interest to investigate the effect of
the self-couplings, which are expected to be useful for
that purpose if the magnitude of those is appropriately
limited so as not to increase the number of spurious
states. To our knowledge, a systematic analysis of the
role played by the self-couplings in associative memory
retrieval including a quantitative evaluation of the
storage capacity seems lacking. Whereas the effect of the
self-couplings on the enhancement of the storage capacity
is not remarkable in the case of the center-cutoff-type
transfer functions, it proves quite large in the networks
with the end-cutoff-type transfer functions. In the latter
case, the self-couplings lead to an increase of the stability
of the retrieval solutions claimed by the SCSNA which
without the self-couplings exhibit instability. As a conse-
quence, the networks with a certain amount of self-
couplings enjoy a remarkable enhancement of the storage
capacity. If the problem of the appearance of spurious
states can be put aside, in the case of e=1 (e: magnitude
of the self-couplings) the network exhibits a maximum
storage capacity of «,=0.78 which is attained at
6=0.27. The € dependence of the storage capacity, how-
ever, is not monotonic with increasing €, but yields an op-
timal € to maximize the storage capacity for each 6.

Except that the storage capacity in the case of small 6
and € is determined from the onset of oscillatory instabili-
ty, the results of the SCSNA showing the large enhance-
ment of the storage capacity and the occurrence of the
phase transition at a =q, are in excellent agreement with
the results obtained from the numerical simulations con-
ducted on the networks of 100=N =700 with the end-
cutoff-type transfer functions.

The outline of the present paper is as follows. We
present in Sec. II an explanation of the SCSNA used in
the later sections to make the paper self-contained. Al-
though the substantial body of the method together with
its application was already reported elsewhere, we will
elaborate on elucidating how the SCSNA is self-
consistent in treating signal and noise parts in the local
field and how it differs from other similar methods. The
present description can be viewed as a reformulated ver-
sion of the original SCSNA. Section III is devoted to the
analysis of neural networks with the center-cutoff-type
transfer functions. In Sec. IV the evaluation of the
storage capacity for the case of the end-cutoff-type
transfer functions is presented. A remarkable enhance-
ment of the storage capacity and the occurrence of a new
type of phase transition are exhaustively described.
Theoretical results are compared with the results of nu-
merical simulations. Finally in Sec. V we present a brief
summary and discussions. Appendix A is devoted to
showing how the SCSNA is available for the case of the
Amit-Gutfreund-Sompolinsky theory. Appendix B is in-
tended to give a systematic derivation of the equations
which are shown in Sec. IV to describe the retrieval
phase with e=1 for a =,

II. SELF-CONSISTENT SIGNAL-TO-NOISE ANALYSIS

A. Analog neural networks
We begin by presenting model neural networks of ana-
log neurons with a transfer function F which represents

input-output relation of neurons. The analog network

dynamics [1(b)] takes the form of
N, (2.1a)

u+2JF(u i=1,...

d
dar” =
where u’s represent membrane potentials, I an external
current, and N the number of total neurons. Equation
(2.1a) is closely related to another type of equation
describing the outputs of analog neurons of the networks,
which should read

d .
Evi=—vi+F ZIJ,jv]+I i=1,...,N . (2.1b)
i=

In fact, when one sets

u,=2 Jyvu; 1,
j=1

(2.1a) turns out to follow form (2.1b), under the condition
that I be constant in time. In particular, in the case
where matrix Jj; is invertible, the two sets of equations
are equivalent to each other.

The synaptic connections J;; are assumed to be sym-
metric and given by the Hebb rule

1 & s ()
:-ﬁ 2 (§,~" —a)(é'j'“ —a)[l+(e (2.2)

—18;] .

Here, {£#} (u=1,...,p,i=1,...,N) denote p (=aN)
sets of biased random patterns for memories which are
specified by independent identical distribution with mean
a:

1—215(§5f”+1) .

pew)=1F9 56w 1)+ (2.3)
We incorporated into the synaptic connections the self-
coupling whose strength is measured by € to observe its
effect on the storage capacity. The case of no self-
couplings is implied by €é=0, and e=1 corresponds to the
case of a formal extension of the local Hebb rule for J;;.
Since too strong self-couplings may lead to a significant
increase of the number of spurious states, we will confine
ourselves only to the case of weak self-couplings.

Equilibrium states of the network are given by
(d /dt)u;=0 [(d/dt);=0] for i=1,...,N, in (2.1a)
[(2.1b)]. Denoting output F(u;) at equilibrium by x;
[=v,(t= )], we define the local field of ith neuron at
equilibrium by

h,=2Jx+I

X 2.4)
j=1

which equals u,(z=). Then a set of equations deter-
mining equilibrium states of the network reads

x;=F(h;), i=1,...,N . (2.5)
Defining the order-parameter overlaps
m(’”=%2(§§f‘)—a)xj, p=1,...,p, (2.6)
j

we consider retrieval solutions to Eq. (2.5) in which
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mP=0(1), mW=0(1/VN) foru>2. 2.7

The so-called retrieval states will be given by the retrieval
solutions which are stable.

B. Systematic treatment of the local field

The SCSNA starts with rewriting the local field (2.4) in
terms of the overlaps as

h=EN—a)m M+ 3 (£ —a)m™+1
v22
+a(l—a?)(e—1)x; . (2.8)

The sum over v=2 in (2.8), which we call the ‘“‘residual
part,” is usually taken to be a random variable with
“mean” a(1—a?)x; in the conventional approach [10,20],
owing to the simple observation that the average of each
(&Y —a )(é‘}")—a )x; (i#j) over the random patterns
should be expected to vanish. [The naive noise
3,56 —a)m™Y—a(1—a?)x; then has its mean 0.]
This observation, however, does not hold true. One has
to be careful to deal with the correlation between
(&"'—a) and m"™ for each v>2. The SCSNA properly
deals with the correlation to extract a systematic part
from the naive noise.

In our first report of the SCSNA [16], we described the
essential part of the method in rather a heuristic manner.
Here, we will present a reformulated scheme of the
SCSNA detailing the self-consistency of the method. We

1 7
m# )_}VEJ: '—a){F[(&V—a)mV+I+z, ]+

Here, the right-hand side of (2.13) was expanded up to first order in (§/*'—a)m *

g‘# —a)m#

first assume that the residual part splits into “pure” noise
part z; , and a systematic part given as the term propor-
tional to the output, yx;, in such that for any u =2

2 (é—gv)_a)m("):z:;+yxi , (2.9)

v#u, 1

and hence that
hi=(&"—a)mV+(gF —a)m W +1

+z; ,Fyx;tal(l—a®)e—1)x, . (2.10)
Here, we reserved the term of O(1/ \/N g‘“ —a)m™*

for the sake of analysis below. Then it can well be as-
sumed that z; , is independent of (¥ —a). The spirit of
the SCSNA is in the self-consistent determination of the
splitting of the residual part into z;

ipand yx;.
The output x; =F(h;) then must satisfy

x, =F[(£"—a)m D+ (W —a)m W+ +z, ,+Tx,],

(2.11)
with
F=y+a(l—a?)e—1). (2.12)
This will be solved in the form
=Fl("~a)m V+(EF —a)m W +T+z,,].  (2.13)
Substituting this into (2.6) gives
Pl —amV+TI+z; 1}, p>2. (2.14)

) which still contributes O(1/V'N ) to

m ( ©=2). For the time being, we assume that the function F has its derivative. Then one obtains m ‘*) from (2.13) in

theform
) = INZ EP —a)F(EV—am D +T+2,,], n>2, (2.15)
J
with
KZI—%E(g‘jf“—a)2F'[(§;1)—a)mm+1+zj7] : (2.16)
j
Utilizing (2.15) and (2.16), one can compute the sum 3., (£ —a)m " as
2 (é—(v _a)m(v)_z 2 KN(é—(v a)(gj —a)F[ §(”—a)m +I+Z ]
v#u, 1 Jj v#Fu,l
( (v) __ 2F ( (1)+I+
~xy 3 € e 2]
w1
(v) _ (y)_ Fr(ED—g)ym D _—
+> 3 (&; a)F[(§; +I1+z,]. (2.17)
JFivFEp, 1 KN

The first term in the last line of (2.17), which was extracted by setting j =i in the sum over j, turns out to be proportion-

al to the output x;, because
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1

(V) 2T (AD — (1 T = X W 2R — (1 —
N S (&Y —aVF(&—a)m'V+T+z ] K<(§’ aVF(EV—amV+I+z,])

(v)
v#u, 1 &

_a

(£ —a )2>§(VVJF[(§E'1)_Q )m“)+I+z_l.’_v]

= (l—az)xi . (2.18)

xR x|

Here we used the assumption of independence of z,_; from &%) and also noted that the O(1/V'N ) term (§#—a)m * in
the expression (2.13) for the output x; can be neglected in the present situation. We now see that the SCSNA claims

a
=—(1—a?). 2.19
r=% ( ) (2.19)
Since the second term 3, in the last line of (2.17) is a sum of almost uncorrelated random variables and its average
over the random patterns {£"},_, ~ (v>2) vanishes, that term has to give rise to the pure noise z; , as assumed in
the scheme of the SCSNA:

=S S o=

v, 1 KN

.....

(& —a)E —a)Fl(EN—a)m D +T+2;,], 2.20

with (z:; > =0. Noting that the cross correlation of each pair of the terms of the z,—; vanishes owing to the absence of
correlation between z; , and (EW —a), one also has

_1 > 2<(§5V)—a)2>((§}”—a>2><F[(§;1>—a)m<”+1+z7;]2>

=2

z), )=
Lu 272

K°N v#Ep, 1 j#i

_ a(l—a?)?

X2 (2.21)

> ~HAFUE —am V4 Tz, P
where ( ) denotes average over the random patterns {£{"'},_, .y (vZ2). We noted from (2.20) that z; , should be in-
dependent of y in the limit N— co. Then subscript p of z; , could be dropped at this stage of the analysis. It is also
reasonable to expect from (2.20) and (2.21) that the statistical property of z; is i independent and obeys an identical
Gaussian distribution. For the SCSNA to work, it is necessary to assume the self-averaging property to hold so that the
site average can be replaced by an average over the random patterns and random variable z:

1
LI I N 2.22
sz: Codeyl, 2 W—e), (2.22)

in which the random variation of z; from site to site can be described by single noise Z obeying an identical Gaussian
distribution. Accordingly, it follows from (21) that variance o? of noise Z is determined self-consistently by

232
o?=(z2)_ == (B —g)m DT +2 ) (2.23)

z K2
where (( »5(1 ) z denotes the average over the condensed pattern & (1) and random variable Z with the probability density

D()=(1/V 270)exp(—z 2/20?).
In the same way, (2.16) for K can be rewritten as

§(l),f ’

K=1 —(l—az)((F"[(g“’—a )m“’+1+7]))§(1)j , (2.24)
and for the relevant overlap m ‘!
m V= (((EV—a)F[(EV—a)mV+T+7] »gm,z . (2.25)
[
In writing (2.25) we omitted the O(1/V'N) term I
(W —a)m ™ in (2.13) which has just a vanishing contri- I'=a x +e—1 |(1—a?), 2.27
bution in the limit N — co.

Substituting (2.19) into (2.10), one has an implicit ex-
pression for the renormalized local field in which the site
i dependence of (2.10) is absorbed into the distributions of
random variables £'! and Z;

h(EV,Z)=(EV—a)ymV+T1+z+TY(EV,7) , (2.26)

with the renormalized output Y(£V,z)=F(h(£",Z)) be-
ing self-consistently determined by [16]

Y(ED,z)=F[(£V—a)mV+I+z+TY(E"V,2)] .
Note that F[(§"—a)m'V+I+Z]in Egs. (2.23)-(2.25) is

(2.28)
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nothing but the Y(£'1),Z).

We can see from (2.12) or (2.27) that the output pro-
portional term I'Y in the local field consists of the self-
coupling related term a(1—a?)(e—1)Y and the squeezed
output ¥ Y due to the renormalization of the residual part
of the local field (2.9). Note that even when the “bare”
self-couplings are absent, e=0, “effective” self-couplings
arise to yield the output proportional term I'Y as the sum
of the two terms. Here, the term ‘“‘renormalization” is
used in two ways. First, it means expressing a distribu-
tion of a physical quantity over sites (neurons) in terms of
a function of random variables, in this case &' and z
obeying a Gaussian distribution. Second, our ‘“‘renormal-
ization” procedure reminds us of the renormalization
scheme used in the many-body theory in the sense that it
extracts the output proportional term of yY due to
“effective” self-couplings from the residual part of the lo-
cal field.

We would like to comment on the terminology for the
SCSNA. When the retrieval state for the condensed pat-
tern &1 ensures nearly perfect recall [for example,
mW=1 in the case of a=0 and F(u)=tanhBu with
B>>1], output Y(§ ) can be cons1dered approximately
to represent the s1gna1 Y (£, z)=¢£"1. Then the squeez-
ing of the output by means of the systematic renormaliza-
tion procedure we have employed will correspond to the
self-consistent discriminating of signal from noise. For
this reason, the SCSNA will deserve being referred to as
such.

Finally with the change of variables

K20_2
= (1—a®?a ’
Var =0,

(2.29)

U= 1—K ’

1—a?
z _
£ =,
o

Egs. (2.23)-(2.25) are transformed to a more familiar
form of equations [16],

m=([" dZL(‘/;;/—Z)*(é OY(ED), 2300
_ 2
<f dz exp ~2°/2) (§,z)2> , (2.30b)

Var = exp(i/ )

Uvar= <f dz= = 2¥(§,2) (2.30¢)
with
Y(&,z)=F[(é—a)m+I1+Varz+TY(£z2)], (2.30d)
P=a(l=a®) |-l te—1 (2.30¢)

1—-U(1—a”)

_{1-U—a®)U}*
? (1—a?)? ’ (2.30f)

where ( ) denotes the average over £. Equation (2.30)
constitutes a set of equations describing the retrieval

states which yield m V0. Although we have so far as-
sumed differentiability of F in deriving the above equa-
tions, the assumption may be lifted in practice, when we
note that (2.30) do not involve the derivative of Y any
longer.

C. The I'Y term and properties of analog neural networks

We note first that the set of equations is exactly the
same as the one obtained by applying the replica sym-
metric theory to analog neural networks [8,11]. This will
imply that the assumption of the self-averaging property,
which is the crux of the SCSNA, should be justified as
long as the neural networks are free from undergoing the
replica-symmetry breaking instability transition [15] at
which an ultrametric structure begins to appear and the
self-averaging property will no longer be expected. As
was seen above, the SCSNA, which requires no more
than quite easy and transparent calculations to yield
(2.29), turns out to be particularly suitable to get micro-
scopic but relevant information of how the local field dis-
tribution P (h) is determined in connection with the ap-
pearance of the I'Y. The situation should be contrasted
with the case of using the replica symmetric theory for
analog neural networks, where the calculations involved
are cumbersome and the origin of the I'Y term is hidden
behind the mathematical trick of the saddle point method
[8]. We may say that the mechanism for the appearance
of the I'Y term was clarified thanks to the SCSNA.

As we pointed out in the previous paper [16], the pres-
ence of the output proportional term I'Y in the local field
is characteristic of the deterministic analog neural net-
works, in which the TAP equation (2.1a) is, by definition,
free of the so-called Onsager reaction field which is re-
quired in the case of the stochastic Ising spin neural net-
works [15]. In other words, when one deals with the
TAP equation [10] of the stochastic Ising spin neural net-
works, the output proportional term I'Y must be can-
celed out by the reaction field term to yield the well-
known result of the AGS theory, in which an equation of
the form (2.30d) with ’'=0 and F( - )=tanhf(---)
follows. One can easily see this by a straightforward ap-
plication of the SCSNA to such a TAP equation. We
give a brief description of the derivation of the AGS re-
sult [7] based on the SCSNA in Appendix A.

Let us proceed to consider the effects of the 'Y term
on the properties of the analog neural networks as well as
on the analysis itself. All of the effects will be related to
the fact that (2.30d), which only implicitly gives the out-
put, has to be solved properly before performing the in-
tegrations over z.

1. Maxwell rule
Jfor determining the available solution Y(E,z)

Equation (2.30d) for Y(&,z) in general admits more
than one solution. In that case a kind of Maxwell rule
should be applied to choose the appropriate solution
[8,16,22]. This is suggested from the replica symmetric
theory applied to analog neural networks [8] in which the
available solution Y is the one that maximizes the ex-
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ponent of the integrand appearing in the saddle point
method. We give a brief explanation of the convenient
recipe by taking, as an example for which the replica
symmetric theory is also available, a typical sigmoid-type
transfer function F(u)=tanhBu with I =0 and a =0.

Suppose (2.30d) is solved graphically as shown in Fig.
1, where any of the solutions Y is given as an intersection
point of the straight line H=TY +&m +V arz with the
curve H=F "(Y). In the case where three intersection
points are allowed to exist for a certain value of T, the
outer one with the larger enclosed area is to be selected.
The middle point has to be discarded since it should give
an unstable solution. The solution Y corresponding to
that outer point would make the Y-related exponent
function arising in the saddle point method larger than
the outer point at the opposite side would, if one worked
with replica symmetric theory. When z takes on the
value z=—£&m /V'ar and an equal area is ensured in the
two enclosed areas, both the outer intersection points can
equally maximize the exponent, yielding two solutions for
Y(z). Accordingly, the solution Y(z) turns out to exhibit
ajumpatz=—£&m/Var.

2. Enhancement of storage capacity

Such a jump makes the renormalized output Y(z) get
considerably increased around z= —£&m /V ar compared
with the original transfer function F with '=0, i.e.,
F(Em +Varz ), as is shown in Fig. 2. Even when (2.30d)
yields a unique solution for Y(z) and the jump does not
appear, a positive I turns out to result in an increase of
the analog gain of a monotonically increasing transfer
function such as the one of sigmoidal type. The
effectively increased analog gain is expected to lead to an

H H=F\Y)

FIG. 1. Application of the Maxwell rule and a graphical rep-
resentation of F~(Y)=TY+&m +Varz for solving Y as a
function of z. The two relevant solutions can coexist for the
equation in which H=TY+&m +ﬁz is specified by the
thick straight line (i.e., z= —&m /V ar ) ensuring the equal-area
condition in the Maxwell rule. The filled circles, circles, and tri-
angles represent relevant solutions (points), which are the most
stable, less stable ones, and unstable ones, respectively.

Y(z)

F(Em+varz)

_Em z
var

'
'
'
'
'

FIG. 2. Schematic comparison between Y(z) and
F(ém +V'arz). The presence of the I'Y term in the local field
is seen to result in an effective increase in analog gain of the
transfer function, leading to an enhancement of the storage
capacity.

increase in the storage capacity. In fact, the storage
capacity of the analog neural networks with the transfer
function F(u)=tanhBu [8] was shown to be larger than
the corresponding Ising spin networks for which I'=0.
In this connection, an introduction of the self-couplings
into the synaptic interactions (e>0) is, in general, con-
sidered to give rise to an enhancement of the storage
capacity, since it increases the I'. Quantitatively evaluat-
ing the change with € of the storage capacity will be of in-
terest. In the following sections we will treat this prob-
lem.

It should be noted that when one uses nonmonotonic
neurons as will be treated in Sec. IV, a case of I' <0 can
occur due to a negative U in the absence of the self-
couplings. In spite of the negativeness of I', the storage
capacity will be shown to be remarkably enhanced. In
that case a major ingredient for the enhancement of the
storage capacity is the shape of the nonmonotonic
transfer function rather than the term I'Y itself. Howev-
er, making the ' positive by an introduction of the self-
couplings (€>0) turns out to result in a further increase
of the storage capacity, as long as € is not very large.

Another effect of the 'Y term in the local field worth
noting is on the distribution of the local field itself. The
distribution of the local field in the case of the stochastic
Ising spin neural networks is, according to the AGS
theory, Gaussian except for the replica-symmetry break-
ing region, because the replica symmetric solution of the
AGS theory claims I'=0. When I' 40 as in the present
case of analog neural networks, the renormalized local
field h(&,z)=TY+Em+Varz is determined through
the renormalized output Y(&,z), which is subject to the
nonlinear transformation (2.30d) in z. As a consequence,
the A(&,z) is nonlinear in z, and a non-Gaussian distribu-
tion of the local field #(&,z) follows. We will see later
that a non-Gaussian distribution of the local field mani-
fests itself in a pronounced manner in the case of transfer
functions with certain discontinuous jumps.

III. NETWORKS OF THREE-STATE NEURONS
WITH THE CENTER-CUTOFF-TYPE
TRANSFER FUNCTIONS

When one is concerned with the relationship between
the shape of a transfer function describing input-output
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relation of analog neurons and the properties of analog
networks as associative memory, it will be of importance
to investigate the behavior of networks with variants of
the transfer function of the formal neuron taking binary
outputs. We would like to explore the effect of cutting off
the output activity of the formal neurons on the storage
capacity and on the related properties of the attractor
neural networks. One may then ask to what extent the
output of binary neurons can be cut off under the condi-
tion that the memory retrieval is still ensured, or whether
the cutting of the output activity leads to any improve-
ment of network performances such as the reduction of
the number of spurious states and the enhancement of the
storage capacity. Among the manners of cutting off the
output of binary neurons which attract our attention are
two types of treatments, both of which formally consti-
tute three-state neurons. The first one gives the center-
cutoff-type transfer function which is obtained by cutting
off the output corresponding to the membrane potential
near the threshold. The second type defines the end-
cutoff-type transfer functions in which right and left
wings of the output activity of the binary neurons are cut
off.

A. Application of the SCSNA

The transfer functions with which we are concerned in
the present section are those of the center-cutoff-type.
They are given by

sgnu, |u|>6

F*w)=10, |u| <0,

(3.1)
and shown in Fig. 3. Here, 0 is a parameter measuring a
degree of the deviation from the transfer function of
two-state neurons F(u)=sgnu. In what follows, assum-
ing nonbiased random patterns with @ =0 in (2.2), we
consider the equilibrium properties of updating dy-
namics (2.1). We first note that when a=0 and the
transfer function F is odd in the variable, i.e.,
F(u)=—F(—u), as in the present case, the average over
£ in the set of equations (2.30) can easily be performed
and the resultant set of equations takes the same form,
except that { ) is omitted with & being replaced by 1:
m= [*_dz Y(1,z)(1/V2m)exp(—z>/2) and so on.
When applying the SCSNA in Sec. II, we have to solve

M)

1

0

-1

FIG. 3. Center-cutoff-type transfer function FM(u) with a
parameter 6.

(2.30d) to obtain the renormalized output Y(z), which is
necessary for the Gaussian integrations involved. We
take into account the Maxwell rule mentioned earlier to
solve

F {\Y)=m+TY+Varz, 3.2)
which is equivalent to (2.30d) with @ =0, £=1, and
'=a L +e—1 (3.3)
—TU . .

Here, the inverse function F~! is formally defined as
what is obtained by a symmetric transformation of the
curve y =F(x) with respect to the line y =x. Two cases
should occur according to the value of T'; case I, " =26
and case II, 0< T <26, as is shown in Figs. 4(a) and 4(b),
respectively.

Case I: T 226. Using the Maxwell rule to select the

Fi(Y)
(a) (z> 20)

-1 >

F1(Y)

(b)

(z1<z2< 72)

(z=2z1)

/ (z< 71)

Y

FIG. 4. A graphical representation of F (Y)=m+TY
+Varz for obtaining Y as a function of z with the aid of the
Maxwell rule, when F=FM: (a) T >26, (b) 0<I'<26. Two
relevant solutions are allowed to coexist for the equation
specified by the slant thick lines with z=z, (a) and z=z,, z=2z,
(b). The filled circles represent the available solutions. The
dashed line with I'=26 is shown only for reference.
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available solution from the five solutions (intersection
points) at values of z near z;,, one immediately obtains the
renormalized output Y(z):

1, z>z,
Y(z)= ~1, z<z,, (3.4)
with
P
° Var '

We see that the renormalized output Y (z) simply coin-
cides with a binary output irrespective of the values of 9,
as long as ' =26. Then the problem is just reduced to
that of the transfer function with 6=0, which corre-
sponds to the case of the zero-temperature Ising spin
neural network of the AGS theory [7].

In fact, substituting the Y(z) into (2.30) yields ¢ =1
and

m=—2N[0,z4] , (3.5a)
—_— —_ _ZZ
var =\/a+—2———e 072 , (3.5b)
V2T
where N[X, Y] denotes a Gaussian integral:
Y, 1, -22n
= —e 7%, 3.6
N[X,Y] fxdz‘/zﬂ_e (3.6)

From (3.5) the storage capacity a, =0.138 follows.

Case II: 0<T <26. Applications of the Maxwell rule
yield the renormalized output Y(z) with jumps at z=2z,
and z=z,:

1, z>z,

Y(z)=10, z,<z<z, (3.7
-1, z<z,,

with

- —60—m+T/2

! Var

7 = 0—m—TI/2

2 Var )

The Y (z) is seen to take a similar form to the original F
of the three-state neurons. Substituting the Y(z) into
(2.30), one obtains a set of equations for m, r, and U:

m=—N|[0,z,]—N[0,z,], (3.8a)

(1—U)?*r=1—N[0,z,]+N[0,z,], (3.8b)
— _ ;2 52

UVar =——(e 2 4¢ 7177 (3.8¢)

V2

Retrieval states and spin-glass ones of the networks are
characterized, respectively, by m+*0, ¢70, and m =0,
q70. They are determined by numerically solving (3.5)
or (3.8) for m, r, and U. The value of I'" is not known a
priori but determined in the course of solving those equa-
tions. The storage capacity will be given, as usual, by the
upper bound of the loading rate for the existence of the
retrieval states.

B. Results

1. Case of no self-couplings (e=0)

We first deal with the case of no self-couplings (e=0).
We display in Fig. 5 the phase diagram drawn on the a-6
plane showing the 6 dependence of the storage capacity
and the phase boundary of the spin-glass state as well.
The parameter 6, which represents a kind of threshold of
a three-state neuron and hence the degree of the devia-
tion from the simple binary output, apparently differs
from the analog gain 8 of a sigmoidal-type transfer func-
tion. However, so far as the behavior of the a, with
changing 0 is concerned, it is seen to be qualitatively the
same as that of the analog networks with changing f3; the
a, decreases from its maximum of a,=0.138, as 6 in-
creases from 6=0 to 1 at which «, vanishes [23].

Characteristic to the present transfer function with the
parameter 6 is the manner of the onset of the spin-glass
states. In a common type of analog networks with analog
gain f3, the spin-glass state (m =0, g0) emerges at a cer-
tain critical value Byg through a continuous phase transi-
tion from the paramagnetic state (m =0, g =0), as S is in-
creased with a kept fixed. This is because such a transi-
tion occurs as a result of the so-called tangent bifurcation
for which the linear stability analysis with respect to an
infinitesimally small ¢ makes sense and a change in the 8
is relevant for the stability change. By contrast, for the
transfer functions (2.1) there occurs no such continuous
transition, since the slope at the origin (¥ =0) of the
transfer functions remains zero. In other words, the
paramagnetic state m =0, g =0 will be stable irrespective
of the value of 6. In fact, the phase boundary for the
spin-glass state in Fig. 5 is given as a discontinuous tran-
sition line on which the spin-glass state abruptly appears
(disappears). Figure 6 depicts an example of the variation

0.20 r
I Spin Glass

0.15 [ P %

a [ o,

0.10 C

0.05 F Disordered
[ Retrieval

0.00 L1 1

0.0 0.2 04 06 08 10 1.2
0

FIG. 5. Phase diagram (e=0) representing the 6 dependence
of the storage capacity and the phase boundary of the spin-glass
phase. The retrieval states are allowed in the region below the
a, curve and the spin-glass ones in the whole region on the left
side of the a, curve. A characteristic feature is the appearance
of a region in the retrieval phase outside the spin-glass one.
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FIG. 6. Plot of spin-glass order parameter g against 8 when
a=0.1. The network is seen to undergo a phase transition of a
first kind between the disordered (paramagnetic) phase and the
spin-glass one.

of the spin-glass order parameter g with the change of 6
for a fixed value of . We see that the spin-glass state
abruptly disappears at a certain value of 6, when 0 is in-
creased from 0. A remarkable feature seen in the phase
diagram Fig. 5 is the appearance of the region (shaded),
though small, of retrieval states in which the spin-glass
state is not allowed to coexist. Since the spin-glass states
give rise to spurious states which are obstacles for associ-
ative memory recall, the appearance of such a region in
the phase diagram will be promising to improve the net-
work performances in terms of reducing the number of
spurious states.

2. Effect of the self-couplings (€ > 0)

From the expression (3.3) for T, it follows that an in-
crease of €, the strength of the self-couplings, leads to an
increase of I'. Recall the effect of I' mentioned in the
preceding section on the storage capacity for associative
memory of the analog networks. We now can observe
clearly, from (3.7), the role played by I' in defining
effective transfer functions based on the “bare” transfer
functions F (3.1). The threshold value 6 of the bare
transfer function 1is effectively transformed into
O0.5=60—T /2 for the effective transfer function which
could yield the renormalized output (3.7). Then (3.3) tells
us that the effect of introducing the self-couplings with
magnitude € is to decrease the value of 6 by ae/2. In
view of the above-mentioned result that the storage capa-
city a, is a decreasing function of 6, such an effective de-
crease (€>0) of the 6 due to the presence of the self-
couplings has to increase ., leading to the enhancement
of the storage capacity, compared with the case of no
self-couplings. We display in Fig. 7 the € dependence of
the a, vs 6 curve, which confirms the above argument. It
can be seen, however, that the maximum value of
a,=0.138 is not exceeded by any increase of the strength
of the self-couplings. It is noted that for a fixed value of €
the storage capacity a, remains constant with a, =0.138,
unless 6 exceeds a certain value 6y(€). This phenomenon,
which is more pronounced as € is increased, is a result of
the occurrence of the case 1 with I" > 26, which is just at-
tributed to the presence of the output proportional term

0.15

0.00 : .
00 02 04 06 08 1.0

FIG. 7. Plot of a, against 0 for several values of e.

I'Y in the local field. Since the introduction of the self-
couplings gives rise to only a little enhancement of the
storage capacity while increasing the number of spurious
states to deteriorate the network performances, overall
effect of the self-couplings may not be so promising in the
case of the present transfer functions. This situation
should be contrasted with the other case which we will
deal with in the next section.

IV. END-CUTOFF-TYPE TRANSFER FUNCTIONS
AND STATISTICAL PROPERTIES
OF THE NETWORKS OF NONMONOTONIC NEURONS

In the present section, we study the neural networks of
three-state neurons derived as a result of another treat-
ment of cutting of the output activity of two-state neu-
rons. To be specific, we consider the networks having
end-cutoff-type transfer functions which are defined by

4.1)

and displayed in Fig. 8. 0 is a parameter controlling the
cutting of activity of a neuron. The transfer function
then becomes a nonmonotonic function. As in the
preceding section, the synaptic connections are assumed
to be given by (2.2) with @ =0 and the updating rule by
(2.1).

A. Case of a finite number of patterns

To observe how the network with a nonmonotonic
transfer function works as content addressable memory,

FM(y)

1

-0

-1

FIG. 8. End-cutoff-type transfer function FNM(u) with a pa-
rameter 6.
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we first consider the case in which the number of stored
patterns p is finite. Using (2.1b) for the updating rule to-
gether with (2.6) for the order-parameter overlaps
{m™},—, ., the network dynamics turns out to take
the simple form

iv,~=—v,--|-F (4.2)

,i=1,...,N.
dr !

i é—i',u)m(u)
p=1

Multiplying both hands of (4.2) by &Y /N (v=1,...,p)
and summing over i, one obtains the set of p-dimensional
dynamical equations for the overlaps:

ﬁ é—(u)m (w)

u=1

>

im(v)—____m(v)_f_z r(é—)é—(v)F
dt €

v=1,...,p. (4.3)

Here, in carrying out the sum over i, we used the concept
of sublattice assuming N to be sufficiently large
[5,24-30]; a p-dimensional vector £=(&'V, ... &%) of
the hypercube HP={—1,1}? represents the sublattice
{(i|€V=¢€Y v=1,...,p} and r(&) is the ratio of the size
of sublattice £ to the total number of neurons N. Since
the patterns are assumed to be random, r(£)=2"7 for
each &.

Assuming {m ")} to be close to one of the retrieval
states for which m ('+0, m *)=0, 2 <v<p, one has

im(”=—m(”+F(m‘”) ' 4.4)
dt

Then an equilibrium value m () is formally determined by
m(l):F(m(l)) . (4.5)

When F=F™ yith > 1, (4.5) yields the common type
of retrieval solutions m’=+1. On the other hand, for
the transfer function F (4.1) with 6 <1 which exhibits
discontinuous jumps in |u| <1, this equation should be
interpreted as follows.

We consider the transfer function (4.1) to be given as
the limit §,, 6—0-+ of a transfer function F505(u) with

small positive parameters §, and 8§ representing the de-
gree of the smoothing of the jumps [Fig. 9(a)]. Then (4.5)
with F(u)=F 805(“) solves as the intersection point of the

two curves representing both hands of (4.5), as is shown
in Fig. 9(b). In the limit §—0+, it turns out that

mV=+6 . (4.6)

In case one deals with (4.4) with the §=0 transfer func-
tion from the outset, that is, without taking the limit
6—0++, the differential equation (4.4) will lose its mean-
ing as soon as the m‘" reaches m'V=16. The m'!
thereafter sticks to that value, so to speak. If one is al-
lowed to modify the interpretation of (4.4) by means of a
certain treatment like a finite difference scheme as an ap-
proximation to a differential equation so as to make such
a sticking solution be a meaningful one representing sta-
tionarity, (4.6) would be viewed as an equilibrium solu-
tion of (4.4).

So far as the theoretical analysis using the SCSNA is
concerned in what follows, we will consider that the

transfer function (4.1) is given as the limit §y, 6—0+ of
certain continuous functions F 505(u) which are piecewise

differentiable.

B. Enhancement of the storage capacity
and phase-transition phenomena

We now deal with the networks with extensively many
patterns, p =alN (N-— ). In applying the SCSNA, we
have to consider four cases according to the value of T
case I, I' < —20; case II, —20<T" <0; case III, 0< "' < 0;
and case IV, I'=6. Since a=0 is assumed and the
transfer functions (4.1) are odd, the set of equations (2.30)
can be handled by specifying Y(1,z) [ =Y(z)] alone as in
the preceding section.

Case I: T <—26. Noting the Maxwell rule [Fig.
10(a)], we solve (2.30d) to obtain the renormalized output
Y(z):

0, z<z|, z,<z

Y(Z)= —m _\/arz (473)
——, z1<z<z,,
r
with
F(u)
(a)
1 "
0 (;)0 6—?; 6 0+d u
-1
Fo5(m)
(b)
1
1 m

FIG. 9. (a) Transfer function F, 605(“) with smoothing param-

eters 8, and & which approximate FNM(x). The latter should be
defined as the limit 8;, §—0 of F505(u) in the context of the

SCSNA. (b) The solutions m (m+0) to m=F505(m) can be

determined from the intersections of the two curves. In the lim-
it 5—0, the m’s are seen to approach +6.
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g = 60+Ts—m
! Var
(4.7b)
;= 0—TI's—m
2 ‘/—a_r
where
5= Q*:‘—{ITZ—W . (4.7c)

Figure 10(b) displays the profile of the renormalized out-
put Y(z). Substituting the Y(z) into (2.30) yields a set of
equations for m, r, and U:

\/_ ) —z2/
mZ—%N[Zl,zz]-i- I"\/O%;(e 20— ! 2) , (4.8a)
ar+m?
(1—U)ZF=TN[21,22]
2mViar | -2 —2n
_%2——(3 —e )
'Vor
2/ ¥22
N rztxx/rﬁ(zle Vzye 27, (4.8b)
— Var m+Varz, .2,
UViar =— N[z,z, ]|+ ———e¢ 2
T [ 1 2] ‘/27TF
m+Varz, _,
v e .30

Case II: —26<T =<0. Equation (2.30d) together with
the Maxwell rule [Fig. 11(a)] yields the renormalized out-
put Y(z):

0, z<z, z4<z
—1, z;<z<z,
Y@)=1{ —m—Varz (4.9a)
— T z2,<z<z;3
1, z;<z<z,,
with
7 = —60+T'/2—m
1 ‘/E 4
7 = '—m
2 ‘/E
(4.9b)
7= —I'—m
3 ‘/a >
7. = 6—T'/2—m
4 ‘/'(; .

The profile of the renormalized output is shown in Fig.
11(b). Substituting the Y(z) into (2.30), one obtains

m= —N[21,22]+N[Z3,Z4]—%N[22,23]

P _ 52 —52
Ifij‘zL(e 2Ty (4.10a)
T
+ 2
(1—U)2r=N[zl,zz]+N[z3,z4]+%N[zz,zﬂ
omVar -2 —22n
—,2 2
(e 27z %), (@.10b)
v
S 2 22
UVar =— Var N(z,,z ]——1_—_—(3 B2y T
a3 V2
(4.10c¢)

Case III: 0<T <6. The renormalized output Y (z) of

Fvl
(a)
\\\
1 _\ = ] v
-0
(z=12)
(z1<2<72)
(z=121)
(z<z1)
Y(z
(b) )

FIG. 10. (@ A graphical representation  of
F~YY)=m+TY+Varz for solving Y as a function of z with
use of the Maxwell rule, when I" < —260. Two relevant solutions
can coexist for the equation with each case of z=z, and z=z,
as shown by the thick lines which ensure the equal-area condi-
tion in the Maxwell rule. Relevant solutions (points) are
marked by filled circles. (b) Profile of the renormalized output
Y(z) for I' < —26. The slant line arises from the intersections
on the Y axis in (a). The occurrence of the jumps at z=z, and
z=z, is a direct consequence of the Maxwell rule.
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(2.30d) satisfying the Maxwell rule [Fig. 12(a)] is solved as 2y= —m
Var ’
0, z<z|, z4<z z =—0-m
’ 1 ‘/i-— 1 ‘/57
—0—m—Varz
—rom_arz —6+T—
= , z,<z<z, =—m m (4.11b)
Y()= 8—m_Varz  _, _, (4.11a) _6-T—m
r 23— \/'—— ’
ar
—1, z,<z<z,
_6—m
1, zo<z<zy, 2= Var
Figure 12(b) displays its profile. Substitution of (4.11a)
with into (2.30) gives a set of equations for m, r, and U:
J
_ —0—m 0—m Var  -2n2 -22p  —2n  —in
m=———"N([z,2,| —N[z,5,2] + Nzp,z3 ]+ —=—N[z3,z4 ]+ — (e +e —e —e ), (4.12a)
r r I'v2r
_ ar+(0+m)? ar+(6—m)*
(l—U)2r—N[zz,zo]+N[zo,z3]+———I:2—N[zl,zz]+—r2——m—N[z3,z4]
2 _ZZ 2 .2
+ FZ(\Z/FE& (zle 21/2+z3e 3/2_228 22/2"246 24/2)
WWar(0+m), —22r2  -2p  War(@—m), -2n -2n
———"(e - YO T —e T3, .
v ¢ e ‘ ) 4.120)
- -1
(a) B! (a) F

~.

™~
T
_1\ \(Z:u)
Q\\e 1 (22<YZ<Z3)

\\zl<z<12 )

\ (z=121)

(z<z1)

Y(z)

(b)

FIG. 11. (a) Same as Fig. 10(a) for —26 <I" <0. (b) Profile of
the renormalized output Y(z) for —260 <T <0.

/(Z=20)

! (22<2<20)
(

(z<z1)

\\\L

T

Y(z)

Z, I

-1

FIG. 12. (a) Same as Fig. 10(a) for 0<T" < 6. (b) Profile of the
renormalized output Y(z) for 0< T <6. Note that the jumps at
u =16 exhibited by the original transfer function F¥™(x) have
been transformed to the slant lines in the Y (z) due to the pres-
ence of the output proportional term 'Y in the local field.
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— Var 2 —z3/2
UVar =— N[z,,z,]+N|z,, +—==e ° .
ar (N[z,2z,] [23,24]) me (4.12¢)
Case IV: T'Z 6. The renormalized output Y(z) of (2.30d) satisfying the Maxwell rule [Fig. 13(a)] is given by
0, z<z|, z4<z
—0—m—Varz
Yo =" 1 z;<z<z, (4.13)
0—m—Varz
", zp<z<2z4,
r
where z, z, and z, are given by (4.11b). Figure 13(b) displays its profile.
Substituting the Y(z) into (2.30) gives
—60—m 6—m Var , —z2n  —2p
m=—pNlzy,20]+ 5 Nlzgz, 1+ o 2= (e e Yy, (4.14a)
_ar+(0+m)? ar+(8—m)? ar —z272 —z2,2
(1“U)zr—TN[Zl,ZO]‘F”*”IQ_N[ZO,Z4]+FT‘/?(216 ! —Zue . )
_ 2Var (0+m) 232 =zip 2Var (6—m) —z2/2 —2%/2
*FZV‘ZT (e e )+ vas (e e ), (4.14b)
— Var 20 -2in
UVar =— N[z{,z2o]+N(zg,z,])+ —=¢ °". .
ar - (N[z4,2z4] [z9,24]) F‘/277_e (4.14¢)

In all the above four cases I' is given by (3.3). The
value of I in general is not known a priori but determined
in the course of solving those equations. It is worth not-
ing that in the case of I" <O (i.e., cases I and II) the sets of
equations for m, U, and r presented above hold true even
for the transfer function given by Fg having a finite value
of the smoothing parameter & at u=|60|, as long as
8 <|T'| /2. This immediately follows from the observa-
tion that due to the Maxwell rule, such Fy yields the
same renormalized output Y(z) as given in (4.7) or (4.9).
It therefore turns out that in the case where the SCSNA
yields " <0, there is no need to consider taking the limit
8—0+ to avoid the jumps of transfer functions.

The storage capacity will be determined as the limit of
the loading rate a for the existence of the retrieval states
which are given by the solution m 70 of Eq. (4.8), (4.10),
(4.12), or (4.14). Our main interest here is twofold in
terms of the storage capacity: first in examining the
effect of cutting the activity of neurons in the range of
membrane potential |u |>6 as shown in Fig. 8, and
second in comparing between such networks with and
without the self-couplings. We will deal primarily with
the two cases of without (¢=0) and with (e=1) self-
couplings J;; [Eq. (2.2)], separately.

1. €e=0

a. Enhancement of the storage capacity due to non-
monotonic neurons. In the absence of the self-couplings

_ aU
r 1-U
Note that if U <0, then I <0. Solving numerically (4.8),
(4.10), or (4.12) in the case of small (6 50.2), intermedi-

ate, or large (6 1.8) values of 6, respectively, we can ob-
tain the order-parameter overlap m as a function of the

. (4.15)

[

loading rate a for a fixed value of 6. Figure 14(a) depicts
the variation of m with the change of a for 8=1.0. The
m(a) is decreasing with increasing a until it abruptly
disappears at the critical value of a=0.385, which gives

Fl

6] // (z<z1)
/ 1 Y

(a)

(z=2)

(z1<z<17y)

(b) Y(2)

FIG. 13. (a) Same as Fig. 10(a) for 6 <T". (b) Profile of the re-
normalized output Y(z) for 6<T.
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the upper bound of a ensuring the existence of the re-
trieval solutions. Hence we denote such a critical value
of a by @,. The &, is nothing but the storage capacity, if
the retrieval solutions are found to be stable fixed points
of (2.1). Since the stability is confirmed numerically in
the present case as will be discussed later, it should be
surprising for a network with a finite 0 to exhibit a larger
storage capacity than that of the commonly known
Hopfield model (a, =0.138 with 6= c0).

For the purpose of viewing the extent to which the net-
works function as associative memory, it will be more
convenient to use the tolerance overlap measuring quality
of retrieval rather than the order-parameter overlap m
which does not account for the activity of neurons with
null output.

The tolerance overlap g with respect to the pattern
{&;1 will be defined in terms of the membrane potential
u; or the local field A; as

8= % 21, §;sgnu;

- % S &sgnh; . (4.16)

i

Then, using the renormalized local field A (&,z), the g in
general can be rewritten as

1.0

0.9 f
m |

0.8 |
0.7 F 3

0.6 — 1

0.5 s b b e b b o]
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1.01

1.00 F
9 :
0.99 f

0.98 [

0.97 b

0.96 F ]
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0.95'....[

0.0 01 02 03 04 0.5
a

FIG. 14. (a) Plot of the order-parameter overlap m as a func-
tion of a for 8=1.0(¢=0). (b) Plot of the tolerance overlap g as
a function of a for 6=1.0 (e=0).

B (—z%/2)
= dz Pz 2] snh(,z)>.
g<f_w e Esenlh(£,2)]
The renormalized local field h(&,z)=Em +Varz +TY,
in the e=0 case, can be easily computed with use of (4.7),
(4.9), or (4.11) and we have

(4.17)

g=g "=—2N[0,z], (4.18)
with z,=—m /V'ar, or

g=g =N][z,,—z;] for case II , (4.19a)

g=g =N][z,,—z,] forcaseI, (4.19b)

depending on the treatment of sgnO. If sgn0=0 is for-
mally applied to (4.17), g=g~ follows in the case of
I' <0. This, however, yields rather a smaller value, say,
g =0.971 for 8=1 and a=0.38 compared with gt
(g ¥=0.983 for the same 6 and a), because h(&,z)=0
occurs with a finite probability.

On the other hand, when the jump at u =0 of the
transfer function (4.1) is interpreted as being the limit
8o—0+ of the analog gain 1/8;, sgn[A(£,z)]=0 holds
only for z=—¢&m /Var. Then z>—&m /Var implies
sgn[h(&,z)]=1, which corresponds to the interpretation
that sgn(0")=1. In that case one obtains g=g*. In ac-
cordance with the previously mentioned remark on the
treatment of the jumps of the transfer functions, we con-
sider g=g*1 to be more appropriate for the tolerance
overlap of the present system. We display in Fig. 14(b)
the plot of g =g * against a for 6=1.0.

The effect of further decreasing 0 or further cutting of
the output activity of neurons is of considerable interest.
As is shown below, the behavior of the networks drasti-
cally changes depending on whether 621 or 6<1. The
networks with 6 <1 indeed exhibit a remarkable feature
from the viewpoint of the neural network theory of asso-
ciative memory and statistical mechanical theory of
phase transitions.

The m vs a plot obtained from (4.10) for 6=0.8 and
0.4 is displayed in Figs. 15 and 16, respectively (thick
curve). Worth mentioning here is that in the case of 6 <1
the standard type of retrieval solutions which are given
not only by m=0 but also by 70 can exist only for a
certain interval of «, the upper bound and the lower
bound of which are denoted, respectively, by @, and «.
We show in Fig. 17 the 6 dependence of the value of @,
together with that of a,. It should be noted that as 0 is
decreased from 6= o, the &, is seen to increase until it
attains a maximum value of as large as =0.50 at 6=0.4,
yielding the possibility of a large enhancement of the
storage capacity. As will be studied later by means of nu-
merical simulations, the storage capacity of the networks
with 651, however, is less than @, because of the oc-
currence of instability, while the storage capacity for
6= 1 will turn out to be given by the &,.

b. Phase-transition phenomena. We now focus our at-
tention to the problem of what is happening to the net-
work when a approaching the lower bound @, at which
the standard type of solution to (4.10) disappears as
shown in Fig. 15 or 16. Figure 18 depicts the behavior of
the solution r of (4.10) for the change of « in the neigh-
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FIG. 15. Plot of m against a for 6=0.8 (¢=0). In Figs. 15
and 16 the standard type of retrieval solutions is represented by
the thick curve. The thin line denotes m’s for the » =0" phase
which occurs as a result of a phase transition at a=a,(0) (see
text); @,.(0.8)=0.442, a,(0.8)=0.073.

borhood of @, Recall that V'ar represents the width of
the Gaussian distribution of the renormalized noise in the
local field in the SCSNA scheme. We can see that with a
approaching a, from above, the width V'ar of noise dis-
tribution tends to 0.

The clue to this anomalous behavior of r is as follows.
Since we know m <1 and |I'| <m near o, by numerically
solving (4.10), it turns out from (4.9) and (4.10) that
Zy,Z5,23—>— and m —->N[—o,z,]<1 as r—0. Ac-
cordingly, we have z,=(0—TI'/2—m)/Var <« and
then

m—»O*% (r—0). (4.20)
Further noting tha; in the limit r—0,
UVar ——(1/V2m)e “*”* and hence U— — o we have

alU
= —a . 4.21
=1~ “.21)
Equations (4.20) and (4.21) give

m=0+% . (4.22)
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0.55 r 7

m [ ]
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FIG. 16. Plot of m against a for 6=0.4 (e=0) showing
@.(0.4)=0.503, a((0.4)=0.289.
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FIG. 17. Plots of @, and q, as a function of 6 when €=0.
The ay curve manifests itself for 6 =1. Whereas the storage
capacity a, is given by @, in the case of 6% 1, the former gets
decreased from the latter due to the occurrence of instability
when 65 1.

In fact, we confirm this by looking at Figs. 15 and 16; the
curve representing m(a), i.e., the solution to (4.10),
disappears upon crossing the straight line given by (4.22).
Since z, was determined by applying the Maxwell rule in
Fig. 11(a), the relation (4.22) associated with the oc-
currence of the anomalous behavior should be just the
consequence of the rule [compare (4.22) with the result of
a finite pattern case (4.6) or the result of a similar anoma-
lous behavior exhibited by the case of e=1 below (4.26)].
We turn to the case of a <a, where the standard type
of solution with m+0, r#0 of the SCSNA can no longer
exist. Let us assume that » =07V still holds together with
U— — o when a<a, Then, repeating the discussion

_.
o
@

-
T

A0 I E Rl L

T

0.34 0.36

FIG. 18. Log plot of r against a in the vicinity of a; when
6=0.4 with ay=0.289. As a tends to ay, r is seen to approach
0.
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above, we see that (4.22) follows. Although the set of
Eqgs. (4.10) as a whole does not seem to work in the limit
r—0, the equation for m (4.10a) can be considered to
hold even in this limit:

6+%—=N[-—oo,z4]. (4.23)

This equation gives z,, which determines the renormal-
ized output Y(z) for a =a, The validity of (4.23) as well
as (4.22) is confirmed by the results of numerical simula-
tions of (2.1), which will be discussed later. When (4.23)
holds, it may also be reasonable to expect that the spin-
glass order parameter g obeys the relation
g =0+a/2=m, which is implied by (4.10b) in the limit
r—0. We note here that if r were exactly zero, (4.22)
would not hold anymore, and instead m=6/(1—a).
One must distinguish between » =0 and r—0. For this
reason, we refer to the a < a, phase as the » =07 phase.

In the »=0" phase the tolerance overlap g (4.18) and
(4.19a) becomes

g=1, (4.24)

because z(,z,,z3— — oo. This implies that the network
with a = a, ensures the complete retrieval of memory. It
is surprising that even with extensively many patterns
stored, the network still exhibits the property of a perfect
recall of memory. The very reason for this phenomenon
is that the residual part of the local field Zﬁﬁ'lé‘ﬁ“)m ()
vanishes for a =a,: besides r=0", we see from (4.21)
and (2.12) that y =0. Note, however, the difference be-
tween the values of m in (4.22) for a0 and in (4.6) for
a=0 (a finite number of patterns). The absence of the
self-couplings, i.e., €=0 in the case of extensively many
patterns turns out to be responsible for the difference, be-
cause the limiting value —a of I in (4.21) originates from
the second term of (2.12) in the present case. Then it is
also noted that a /2 in (4.22) is just a result of the applica-
tion of the Maxwell rule.

In view of the qualitative change at a=gq, of the sta-
tistical property of the associative memory recall, we may
refer to the point a=q, at which the two types of re-
trieval states with 520 and »=0" exchange each other
as a phase-transition point, although no symmetry break-
ing seems to be involved there. We depict in Fig. 19 the
tolerance overlap g plotted against a for 6=0.8. The
qualitative change in the memory retrieval process, how-
ever, can be seen to occur not abruptly but continuously
when a crosses the crossover point a=a, The 6 depen-
dence of the o, without taking into account the stability
problem was already shown in Fig. 17.

2. e=1

We consider the case of e=1 to observe the effects of
the self-couplings on the enhancement of the storage
capacity and on the behavior of the phase transition. A
more general case of € >0 will be briefly discussed later.

a. Enhancement of the storage capacity due to the self-
couplings. Setting e=1 yields

a
1-U’
which is positive as long as U <1, and hence cases III

=

(4.25)
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FIG. 19. Plot of the tolerance overlap g against a for 6=0.8
and €=0. Note that g=1 (exactly holds for
0=a=<ay0.8)=0.073.

and IV are to be applied. Solving (4.12) or (4.14) for the
standard type of solution m =0, r#0 as before, we can
obtain the value of @, defined as the upper bound of a
ensuring the existence of retrieval solutions. Figure 20
shows m(a) curves for 6=1.2, 0.8, and 0.4, respectively.
As in the case of €=0, when 6 <1 the standard type of
solution with 70 of the SCSNA can be allowed only for
a between the two critical values: ay(8)<a <&, (0).
Since the retrieval solutions with eé=1 are confirmed to
be stable by numerical simulations, the &, turns out to
equal the storage capacity.

The storage capacity «, is presented as a function of 6
in Fig. 21. The a, exhibits a broad peak at a small value
of 6: af®*=0.775 at 6=0.27. If the problem of the ap-
pearance of spurious states can be put aside, we see by
comparing the present case with the case e=0 (Fig. 17) a
remarkable enhancement of the storage capacity due to
the self-couplings which amounts to as much as about a
five times larger value than the well-known value of 0.138
for the original Hopfield model. It should be noted that
the effect of the self-couplings is to increase the stability
of the retrieval solutions and spurious ones as well.
Indeed, the fact that @, =q, is attributed to the suppres-
sion of instability exhibited by the retrieval solutions un-
der no self-couplings.

b. Phase transition at a=a, and the behavior below o,
When a approaches the lower critical value «, from
above in the case of 6 <1 with e=1, r of the standard
solution to (4.12) is found to tend to O, and the phase
transition occurs at a as in the case €=0. It is reason-
able to expect that the equilibrium state of the networks
below the transition point is characterized by the vanish-
ing noise = +0. Assuming r— +0 in (4.11b) and (4.12),
we have z,z,,z,— — o and |U|— «, and hence from
(4.25) TI'—0. Then we can _ postulate that
z,=(0—m)/Var and z;=z,—T'/Var remain to be
finite. Accordingly, it follows that
(r—0+).

m-—0 (4.26)

Unlike in the case of é=0 we can formally deal with
the SCSNA equations (4.12) for the description of the
property of the phase with a@ < a,. Suppose
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—z,)=lim — 4.27)

w=lim (z ==
ro 4 r—0 Var

Taking the limit » -0+ of (4.12a) and using (4.26) to-
gether with (4.27) yields

ZuN[z,—w,
0=N[—o0,z,—w]+ 4N[zj—w,z4]
w
1 —22/2  —(z,—w)/2
—{e —e
wVvV2r {
Furthermore, combining (4.12b) and (4.12¢) in the limit
r—0-+, we obtain

. (4.28)

|
- 2 2 2
M=w2N[— oo,z4——w]+(1+z§)N[z4—w,z4]+—%£—4—{eﬁz“/z-—e_(z“—w) /2}
a \/27T
.2 _ )2
—7/-12:—;{24 Z4/2—(24—w)e (za 7w /2} . (4.29)
[
1.0 o T T T These equations yield w and z,, from which the renor-
; (a)] malized output Y(z) will be determined. Note, however,
0.9 F e=l ] that the solution w and z, does not satisfy either of the
m Ay equations (4.12b) or (4.12¢) itself under such a scaling as
08 F ] taken above for w and z, in the limit r —0+. A more
[ ] systematic derivation of the above equation is given in
0.7 b ] Appendix B, where the r =0" phase below a in the case
Tt ] of e=1 will be shown to be describable in terms of a cer-
[ ] tain limit of the SCSNA equations (4.12).
0.6 ] We have drawn the line m =60 in Figs. 20(b) and 20(c)
1 l ' 1 J to show that the m(a) curve corresponding to the stan-
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FIG. 20. Plot of the order-parameter overlap m as a function
of a for (a) 6=1.2, (b) 6=0.8, and (c) 6=0.4, when e=1. The
thick curves represent m(a) given by the standard type of re-
trieval solutions with 50, whereas the thin lines in (b) and (c)
give m(a) implied by the r =0" solution [see Eq. (4.26)].

dard type of solution with 0 disappears upon crossing
the line, giving birth to the r =0% “solution” represented
by the line m =0 itself. Figures 22(a) and 22(b) display
the behavior of the solutions to the set of Egs. (4.28) and
(4.29) for changing «a in terms of 1/w and z,/w, respec-
tively, in the case of 6=0.4 (e=1). The irrelevant solu-
tion is represented by the dash-dotted-line and the
relevant one by the solid line. In accordance with the
fact that the r=07" phase occurs for a < a, the two solu-
tions are seen to terminate at a=a,
[a(6=0.4)=0.409]. The two quantities 1/w and z,/w,
respectively, represent the width and output ¥V, yielding
the peak of the output distribution P(V), which will be
defined and discussed later.

For the tolerance overlap g of (4.16) in the case of
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0.0 .i..l...\.‘,l..L.l....l.,..1..4-
00 05 10 15 2.0 25 3.0

0

FIG. 21. Phase diagram on the 0-a plane displaying the 6
dependence of the storage capacity o, together with ay(6) for
e=1.
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I' >0, immediately follows the expression (4.18) from the
fact that the local field is not allowed to vanish, i.e., #70.
We see that g =1 holds for a < ¢, implying that memory
retrieval without errors is also possible in the case of
€=1. The dependence of the oy on 6 is drawn in the
phase diagram on the 8-a plane already given in Fig. 21.
Befote passing, we briefly discuss a general case of
€>0. We depict examples of the € dependence of the
storage capacity a, as well as of the values of @, for fixed
values of 6 in Fig. 23 (6=0.4 and 1.0). An appreciable
difference between the a, and &, can be seen for small
values of €. The effect of the self-couplings turns out to
increase the stability of the retrieval solutions to the
SCSNA order-parameter equations. As € is increased
from €=0, the a, is seen to increase to attain its max-
imum value at a certain value of € and afterwards to de-
crease with a further increase of €. Such nonmonotonic
behavior of the storage capacity accompanied by the
change in € turns out not to go parallel with the case of
the center-cutoff-type transfer functions in the preceding
section, although a qualitative explanation for the
difference remains to be given. As for the occurrence of
the phase transition involving the disappearance of the
noise in the local field in the case of 8 <1, networks with
0<e<1 were found to exhibit qualitatively the same
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FIG. 22. Behavior of the solutions to the set of Eqgs. (4.28)
and (4.29) describing the »=0" phase with e=1. (a) Plot of
1/w against a for 6=0.4, (b) Plot of z, /w against a for 6=0.4.
The relevant solution (the solid line) and irrelevant one (dash-
dotted line) are seen to merge with each other to terminate at
a=ay (=0.409).
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FIG. 23. Plots of a, (solid) and @, (dotted) against € for
0=0.4 and 1.0. The thin line was determined numerically, and
the thick line implies @ =a,. The deviation of a, from @, is
due to the occurrence of instability of the retrieval solutions.

behavior as that of e=0. However, when €> 1, there
occurs no such phase transition. We can see this quite
easily using (4.12) and (4.14). (Note that I' >0 for > 1.)
Suppose =07 occurs for a70 in (4.12) or (4.14). Then
|U|— o« follows as before, but I" turns out to remain
nonzero [i.e., a(€—1)] this time. This leads to a contrad-
iction in (4.12c) or (4.14c). The vanishing of the noise
occurs only in the limit a—0.

C. Local field and output distributions

The occurrence of the new type of phase transition
which arises from the vanishing of the residual part of
the local field (i.e., —>0+) can be more directly seen by
examining the local field distribution P(4). It is defined
as
(4.30)

V2r  dh
which is quite easy to evaluate using the renormalized lo-
cal field h(&,z) together with the renormalized output
Y(&,2).

In the case of —26 <I" <0 (case II) and 0 <T <8 (case
III), which covers a large region of the retrieval phase of
interest in the 6-a phase diagram for ¢e=0 (Fig. 17) and
e=1 (Fig. 21), respectively, the local field distribution is
given as follows. For —26<I"<0

_ [ exp(—z?/2) dz

m+I m-—T _|_|
= Ir|
P(h)= |Py(h), |h|>6+ 5
0, O-LI;—|<|hl<0+|—gL, 431
and forO<I'< @
O(|h|—6)Py(h)+O(—|h|+6)P(h)
P(h)= +wd(|h|—86), T=<|n|

0, T'>|n|,
(4.32)
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where
P‘(h):m ‘eXP — (|hl—2;r:r—l‘)2
+exp —_(]il_%iﬁ ] ] ’
PZ(h):ZTZI;T“_’[eXp _Ql%r)z 4.33)
+exp _&;Tf:_)i ] ] ,

0=1{N(z3,2,1—N[z5,2, 1} ,

with z,, z,, z3, and z, given by (4.11b), and O(x)
represents the Heaviside function [©(x)=1 for x =0 and
O(x)=0 for x <0].

We immediately notice that the local field distribution
P(h) is not Gaussian but piecewise of a sum of Gaussian
distribution. The non-Gaussian behavior is a conse-
quence of the I'Y term in the renormalized local field of
analog neural networks, as was mentioned in Sec. II. In
particular, clear evidence of the non-Gaussian property is
the appearance of the forbidden gap in the P(h4); due to
the Maxwell rule, the local field is forbidden to take its
values in the interval of width |T'|,

T T

0 5 < lh| <6+ 5
in the case of —20<TI" <0, and in the interval |A| <T in
the case of 0 <I" < 6. We give, in Figs. 24 and 25, respec-
tively, some examples of P(h) computed in the case of
0=0.8 and 0.4 for different values of a with €=0, for
which —26 <T <0 holds. In addition to the appearance
of the forbidden gap in the local field distribution, we
clearly see that the narrowing of the width of the distri-
bution occurs in accordance with r—0, when a ap-
proaches a;,. When a = a, taking the limit » —0 of (4.31)
and using (4.22) and (4.23) one has

P(h)=M8[|h|—-

(4.34)

o—<&

2 2

a

+1—_91a£5[|h|_ o+2

2

] . (4.35)

Figure 26 displays examples of the profile of the P (#4)
given by (4.32) for different values of @ when 6=0.4 with
€=1. It is noted that the overall spreading of the distri-
bution is quite narrow compared with the case of €=0,
owing to the existence of the 8-function component locat-
ed at |[h|=6. The width of the remaining broader com-
ponent of the distribution is seen to get narrower in ac-
cordance with » —0, as a approaches a,. When a <a,, it
turns out that the P(4) is concentrated on |4 | =8 (though
not displayed here).

In such a case where the local field distribution is in-
dependent of a (a =a, and €=1), it is of use to consider
the output distribution which varies with a. The output
distribution, in general, helps a lot to observe more

directly the shape of the renormalized output Y(z) which
plays a central role in the SCSNA under the functioning
of the output proportional term I''Y.

Letting

V,=EVx,[=&VF(u;)], i=1,...,N, (4.36)

we define the distribution P(¥) of the scaled output {V;}
as in the case of the local field distribution P(%). [Re-
place & in (4.30) with V(£,z)=£Y(§,z).] Explicit expres-
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FIG. 24. Local field distribution P(h) computed from (4.31)
with €=0 for 6=0.8, for several values of a: (a) a=0.09, (b)
a=0.2, (c) a=0.38.
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sions for the output distribution P(¥) in the case of
—20<TI'=0and 0<TI <0 are given as follows.
When —260<T <0,

ﬁ(V)=I[~1,1](V) exp

r
V2mrar
FN[z3,24 180V — 1)+ {1+ N[z4,2,1}8(V)
FN[z,,2, 18V +1) 4.37)

with z,, z,, z;, and z, being given by (4.9b), and
I, ,;(V) denoting the indicator function of the interval
[—1,1].

_In particular, for a <a, with r=0" and '=—aq, the
P(V) turns out to consist of the §-function components
alone:

_(TV+m)?
2ar

B(V)=N[—0,2,]8(V —1)+N[z,, ® |8(V) . (4.38a)

Here we noted that the continuous component in (4.37)
vanishes, because —20<I' <0 implies a<26. Noting
m= [*_VP(V)dV together with (4.22), we see that
(4.23) is recovered. Then (4.38a) is rewritten as

B(v)= 9+—‘;— 8(V—1)+ [1—9—% 8(V). (4.38b)
250
8=04
(G) o=0.29
P(h)
125 {
0 . -
-1.5 0 1.9
h
6
(b) B8=0.4
o =0.35
P(h)
/ ! |
A AR
., IR
-1.5 0 1.5

FIG. 25.
a=0.35.

Same as Fig. 24 for 6=0.4: (a) a=0.29, (b)

887
When 0<T" <6,
ﬁ(V)=I[o,11<V>;/2—7T;e"P _[_r_[:%g;—_m]
T 1,0(V)s——=exp —%tn—ﬂil

+N[zp,2;18(V—1)+{1+N[z4,z,]}6(V)

+N[z5,218(V+1) , (4.39)

with zq, z,, z,, z3, and z, given by (4.11b).

Of particular interest here is the case a < a, with e=1
and 6 <1. Noting in the limit » -0+ (4.27) and so on,
the above P(¥) turns out to take the form

I w wAV—z,/w)?
P(V)_‘I[O,”(V) ‘/E;CXP )

+N[—o0,z,—w]8(V—1)+N[z,, 0 ]6(V),

(4.40)
20 0.4
(a) B=0.4
=05
P(h) (e=1) W
10 -
0 : \ ; j . 0
-1.0 0 1.0
h
20 0.4
(b) 8=04
o=0.75
P(h) (e=1) w
10 1

0 _//'\._

-1.0 0 1.0

\
4

FIG. 26. Local field distribution P(h) given by (4.32) with
e=1 for 6=0.4, for several values of a: (a) a=0.5, (b) =0.75.
The right-hand side ordinate represents the magnitude w of the
8-function components of the local field distribution.



888 M. SHIINO AND T. FUKAI 48

where w and z, are determined by (4.28) and (4.29). Al-
though below the transition point a, (e=1) the local field
distribution P(%) is concentrated on |h|=6, the P(V)
still has a continuous component taking a Gaussian form
with variance 1/w? and mean z,/w. Figure 27 depicts
the profile of P(V) given by (4.40) for 6=0.4 and a=0.25
together with the one given by (4.39) for 6=0.4 and
a=0.75. Note that the continuous component of the
output distribution arises from the slant part (z; <z <z,)
of the renormalized output Y(z) in Fig. 12(b). The
dependence of the variance 1/w? and mean z,/w on the
loading rate a was already given in Fig. 22. From (4.28)
and (4.29) we can easily see that as a approaches O,
z,/w—0and 1 /w?—ab*

D. Numerical simulations

We conducted numerical simulations to confirm the
theoretical results of the SCSNA for the networks of non-
monotonic neurons presented in the preceding section.
Most of the numerical simulations performed were on the
networks of N neurons with N ranging from 100 to 700,
where the sets of differential equations (2.1a) or (2.1b)
with the transfer function (4.1) or the one having a
smooth parameter 6 were solved for a variety of combina-

0.06
(a)
Bw) A
0 v — : —o
-1 0 1
Y
3 0.5
RS
Bv)

FIG. 27. Output distribution P(¥) given by (4.39) or (4.40)
with €=1 for 6=0.4. The right-hand side ordinate represents
the magnitude A of the 8-function components of the output dis-
tribution, e.g.,, AMV=1)=N[—o,z,—w] and MV =0)
=N[z4, ] in the case of Eq. (4.40). (a) @=0.25(r=0" phase)
[MV=1)=7.14X1073, AMV=0)=5.50X10"2, MV=—1)
=0], () a=0.75 [MV=1)=9.92X10"2%, MV=0)=3.32
X107, MV=—1)=8.29X1074.

tions of initial conditions and parameters involved in the
models by means of the Runge-Kutta method with time
step At=0.01 or 0.025 and the number of steps n
sufficiently large for its convergence (n < 1500). The tar-
get was set particularly on examining the stability of the
retrieval solutions given by the SCSNA order-parameter
equations, the critical storage capacity a,, the effect of
the self-couplings, and the occurrence of the new type of
phase transition associated with the onset of the perfect
recall of memory. Apart from the stability problem in
which the occurrence of instability makes a, smaller than
&, for small values of 6 and € as is shown below, the re-
sults of the simulations are in quite satisfactory agree-
ment with those of the SCSNA, confirming the validity of
the SCSNA itself together with the claimed prescription
of the Maxwell rule.

Before presenting the simulation results obtained, we
here note the use of the transfer functions (4.1) exhibiting
jumps at 4 =10 as well as ¥ =0 in the numerical integra-
tions of (2.1). As is previously mentioned of the treat-
ment of the jumps of the transfer functions, numerical
simulations, in general, have to be carried out on the net-
works having transfer functions with a very small
smoothing parameter 8 in Fig. 9(a), except for the case in

0.60 [
L (a) e=0
[ 8=04 ]
0.55 | - ]
m a
0.50 | 1
[
0.45 F .
0.40 A T TR TR SR R

0.0 0.1 02 03 04 05 0.6
0]

0.9

[ (b)

L
0.6 NENEN A BT IS AT A BT S
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a

FIG. 28. Plot of m as a function of a for e=0 obtained from
numerical simuiations with various N together with the corre-
sponding SCSNA result: (a) 6=0.4 (a,=0.289, & =0.503,
a,.=0.40), (b) 6=0.8 (2;=0.073, @.=0.442, a,=0.42) (circle:
N=500; rectangle: N=200). The upper bound for the ex-
istence of the stable retrieval solutions defines the storage capa-
city a..
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FIG. 29. Phase diagram on the 6-a plane showing the 6
dependence of the storage capacity a. for e=0 (solid line). The
region a <a, represents the retrieval phase. The curves for @,
and a, are reproduced from Fig. 17. The thin line which re-
places the @,’s for 8 51 (the dotted line) was determined numer-
ically. The »=0" phase occurs in the region satisfying both
a < a, (below the thin line) and a < a, (below the dashed curve).

which the SCSNA yields I' <0. When I' <0, the results
with (4.1) (.e., F505 in the limit §;, 8—0-+) can be

recovered by use of the transfer functions F o+ which are

smoothed at |u| =6 with 6§ < |T"| /2.

We tried to compare between the use of the transfer
functions F ., with exactly 6=0 (jump) and 0<6<<1
(smooth). Interestingly, it was found that in most cases
use of F o+s with §=0 yields almost the same results as
obtained from transfer functions with 6 << 1, confirming
the results of the SCSNA. We consider that it is a finite
difference scheme introduced by the finite step size used
in the numerical integrations for (2.1) that is responsible
for preventing the updating dynamics with the jumps
from losing its meaning, and hence for allowing one to
view a sticking solution as a kind of equilibrium solution

8

0.4 —

0.2

0.0 —

-0.2 T T T T 1

0.0 4.0 8.0 12.0 16.0 20.0
t

FIG. 30. Oscillatory instability exhibited by a neural network
with a > a, for small 8. The time course of the retrieval process

is expressed in terms of the tolerance overlap g: a=0.28,
6=0.2, N=500, and €=0.

for which the SCSNA is applicable.

A single major problem of using the §=0 transfer
function was generated, when the local field distribution
P(h) was computed from the expression h; =3 ;J;;F(u;)
using the set of equations (2.1a) for membrane {u;}. It
seems that the sticking solution in that case together with
the expression for A; cannot properly reproduce the sta-
tionary local field distribution P(4). Even in this case,
however, the distribution of {u;} itself yields correct re-
sults for P(h), which were also obtained using the set of
equations (2.1b) for output {v;} together with

hi=2jJ,»jvj.
1. Case of €e=0

Figures 28(a) and 28(b), respectively, show the depen-
dence of the order-parameter overlap m on the loading
rate a for 6=0.4 and 0.8 obtained from simulations with
N =200 and 500. For comparison the theoretically ob-
tained results are reproduced (thin lines) from Figs. 15
and 16. At first glance, we observe satisfactory agree-
ment between the results of the SCSNA and those of the
simulations below certain values of a, above which the
retrieval solutions given by the SCSNA were found nu-
merically not to attract dynamical flows with any initial
conditions. It is noted that the occurrence of the new
type of phase transition at a, and (4.22) describing the

(a)

(b)

0.6 —
o

0.4

0.2

0.0 —

-0.2 T T T T 1
0.0 2.0 4.0 6.0 8.0 10.0
t
FIG. 31. Time course of the retrieval process in terms of g
for networks in the retrieval phase (N=500): (a) a=0.3,
6=0.3; (b) «=0.3, 6=1.1.
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behavior of m below a, are seen to be justified. The
dependence of the spin-glass order parameter ¢ on «
below a, (though not shown here) was also confirmed to
obey the relation g =m =0+a /2 as is suggested by the
theory, where the g is defined as (1/N)3N_ v} (=) in
numerical simulations.

The storage capacity a, in such a case as given by
6=0.4 and 0.8 should not coincide with &_, but has to be
determined numerically from the upper bound for the ex-
istence of the stable retrieval solutions. We given in Fig.
29 a phase diagram representing the 6 dependence of the
a, together with the one reproduced from Fig. 17.
Whereas the storage capacity a, for 62 1 is seen to equal
&,, the one for 61 gets reduced by an appreciable
amount particularly at vanishing 6.

Figure 30 presents an example of the time evolutions of
the tolerance overlap which was obtained when a net-
work with small 6 has a just outside the retrieval phase
(i.e., a, =a=a,). We see that the occurrence of oscilla-
tory instability with small amplitudes of oscillation
indeed leads to the reduction of the storage capacity,
making a, smaller than &.. The retrieval solution given
by the SCSNA is considered to undergo a series of certain
bifurcations including the Hopf bifurcations at or around
the phase boundary representing the a,.. Note that due
to the nonmonotonicity of the transfer function the ex-
istence of a Liapunov function cannot be expected any

1.0 —
= (a)

0.8

o
N
»
-]
-]
-
[=]

FIG. 32. Same as Fig. 31 but in terms of m. (a) «=0.3,
6=0.3; (b) a=0.3,0=1.1.

longer.

Examples of the retrieval process exhibited by the net-
works in the retrieval phase @ =a,, on the other hand,
are shown in Fig. 31. Figures 31(a) and 31(b) display the
time evolutions of the overlap g started with various ini-
tial values for the network with 6=0.3 and «=0.3 and
for the one with 6=1.1 and a=0.3, respectively. Noting
that the two cases have the same loading rate a, we see
that the network with smaller 6 is more tolerant of a de-
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FIG. 33. Local field distribution P(4) in the retrieval state
(e=0) with 6=0.4 for (a) a=0.14, (b) «a=0.29, (c) a=0.35 ob-

tained from numerical simulations with N =200.
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FIG. 34. Same as Fig. 33 with 6=0.8: (a) a=0.06, (b) a=0.09, (c) «=0.2, (d) «=0.38 (N =3500).

graded pattern given initially than the other one. It is
noted that the retrieval state with g =1 attained in Fig.
31(a) is the r=0" state. We depict in Fig. 32 the time
course of the retrieval process expressed in terms of m of
Fig. 4. It is seen that the time required for an initial state
of the network to settle into the retrieval state can be
much reduced when expressed in terms of g. This implies
that use of g is more appropriate in the networks with
such transfer functions as the end-cutoff-type one not
only as a reasonable measure to define the pattern overlap
but also from the viewpoint of recall speed.

Let us turn to the local field distribution P(%). Figures
33(a), 33(b), and 33(c) show the averaged histograms over
an appropriate number of trials for the local field 4,’s at
equilibrium state of the network (N =500) with 6=0.4 in
the case of a=0.14, 0.29, and 0.35, respectively, and
Figs. 34(a), 34(b), 34(c), and 34(d) for «=0.06, 0.09, 0.2,
and 0.38, respectively, with 6=0.8. Since P(h) is sym-
metric with respect to A =0, i.e.,, P(h)=P(—h), it will
suffice to focus one’s attention only to either half of the
P(h). As is suggested by the result of the SCSNA with
€=0, each local field distribution in the figures is seen to
be non-Gaussian and double peaked, although the slit

with width |T’| which must be located at |A|=8 is not
visible (compare with Figs. 24 and 25), probably due to
the finiteness of N. Furthermore, as is observed particu-
larly in Fig. 34 of the case of 6=0.8, with a approaching
a, the distribution gets more sharply peaked, and settles

0.50 ——————T———
0.45 | 0-04
m | ]
0.40 | .
0.35
&

030 L——v 11

0.0 0.3 0.6 0.9

FIG. 35. Plot of m as a function of a obtained from numeri-
cal simulations for 6=0.4 with e=1 together with the SCSNA
result.
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into two & functions located at |h|=6%|T"|/2 when
a=<a, We see that not only the profile but also the
overall behavior with changing a of the local field distri-
butions obtained from the simulations are qualitatively
well explained by the results of the SCSNA.
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FIG. 36. Time course of the retrieval process in terms of the
tolerance overlap g, when e=1 and N =500: (a) a=0.4, 6=0.2
(r=07" phase); (b) a=0.4, 6=0.8; (c) a=0.7, 6=0.3.

2. e=1

We depict in Fig. 35 a plot of m against a for 6=0.4
which was obtained from simulations on the networks
with the self-couplings e=1, together with the theoretical
result of the SCSNA. Unlike the case of €=0, for the en-
tire region of a below @, quite good agreement is found
between the results of simulations and the theory,
confirming the existence of the »=0" phase with the re-
lation m =6. We now see that as a consequence of the
stabilizing of the retrieval solutions to the SCSNA with a
sufficient amount of the self-couplings, the storage capa-
city a, with e=1 coincides with the value of &,. The re-
lation a, =@, holds for any 6. As was mentioned earlier,
the effect of the self-couplings is to make the value of a,
approach the value of &, (see Fig. 23) by increasing the
stability of the retrieval solutions and of spurious states
as well. Figure 36 displays examples of the time course of
the pattern retrieval process which are exhibited by the
networks with a and 0 specified by three different points
in the a-0 phase diagram of Fig. 21, one of which belongs
to the r=0" phase. Indeed, we notice that unlike the
case of €é=0 there seem to appear a number of spurious
states especially in the vicinity of such a large value of a,
as ~0.77; only the networks started with initial values of
the tolerance overlap g(0) close to 1 can settle into the re-
trieval state after some time, whereas the networks, if
they fail to retrieve the stored patterns, are seen to be
easily captured by spurious states with g( o ) near the ini-
tial value g(0).

It will be possible, however, to control the value of € so
as to ensure high storage capacity while keeping the num-
ber of spurious states as small as possible. Such a choice
of € is given in Fig. 37, where the network with 6=0.4
and €=0.45 is seen to yield an appreciably reduced num-
ber of spurious states under the loading rate of «=0.5.

Turning to the problem of the statistical behavior of
the networks with e=1, we depict in Figs. 38(a), 38(b),
and 38(c) the local field distribution obtained from simu-
lations with N =200 in the case of a=0.25, 0.5, and 0.75,
respectively, with 6=0.4. The profile of the distribution

0.0 2.0 4.0 6.0 8.0 10.0

FIG. 37. Time course of the retrieval process in the case of
€=0.45 for a network with «=0.5 and 6=0.4 (N =500).
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for a> a, is seen to be composed of a sharp peak corre-
sponding to a 8§ function and a more or less broad distri-
bution, as is suggested by the theoretical result (4.32) of
the SCSNA (see Fig. 26). The broad distribution, howev-
er, is seen to get narrower as a approaches o, and for a
below ¢, the whole profile of the local field distribution
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FIG. 38. Local field distribution P(A) in the retrieval state
(e=1) with 6=0.4 obtained from numerical simulations
(N =200) for (a) a=0.25, (b) @=0.5, (c) a=0.75.

turns out to be & peaked at |#|=6. It should be noted
that the local field distribution of e=1 is, as a whole, nar-
row for the largeness of the value of a. Compare the
present case with Figs. 33 and 34 for €=0. The
difference between the two will be attributed to the sign
of I in (3.3). When I is positive, as in the case of e=1,
the renormalized output Y(z) takes the form as shown in
Fig. 12(b) or 13(b), and hence there appears a region of z
in which |#|=6, implying the occurrence of the 8 func-
tion in the local field distribution (4.32). As was men-
tioned previously, even when the narrowing limit of the
width of the local field distribution with é=1 is attained
for a < a,, the distribution of the scaled output P(V) ex-
hibits, besides a finite measure at ¥=0 and 1, a com-
ponent which is distributed all the way from V=0 to 1.
Results of numerical simulations indeed confirm the ap-
pearance of the continuous component of the P(V), an
example of which is given in Fig. 39. This is also in good
agreement with the result of the SCSNA shown in Fig.
27.
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FIG. 39. Output distribution P(¥) in the retrieval state
(e=1) under the same condition as Fig. 38: (a) a=0.25, (b)
a=0.75. In the simulations the transfer function with §=0.005
is used together with the dynamics (2.1b) (I =0).
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V. SUMMARY AND DISCUSSIONS

We have presented a reformulated scheme of the self-
consistent signal-to-noise analysis (SCSNA), which eluci-
dates the self-consistent treatment of the local fields of
neurons, i.e., renormalization of the naive noise in obtain-
ing the set of order-parameter equations for retrieval
states. Using the SCSNA, we have explored properties of
neural networks for the qualitatively different two types
of transfer functions FM (center-cutoff-type) and F™M
(end-cutoff-type), which are derived by cutting off the ac-
tivity of a neuron with binary output to formally describe
a three-state neuron taking output values on —1, 0, and
1. The SCSNA has proved powerful in exploring micro-
scopic as well as macroscopic properties of the analog
neural networks. The main results of equilibrium proper-
ties of the networks are concerned with the enhancement
of the storage capacity and the phase-transition-related
issues brought about by the choice of those transfer func-
tions and the introduction of the self-couplings. Our con-
clusions drawn from the theoretical results together with
the results of numerical simulations are summarized as
follows.

Concerning the SCSNA applied to the analog neural
networks, we note the following.

(1) So far as the retrieval states given as stable fixed
points of the updating equations of the analog neural net-
works are concerned, the SCSNA yields a detailed
description of the mechanism of determining the local
field distribution of neurons, which plays an important
role in obtaining the retrieval phase boundary.

(2) The local field distribution of the analog neural net-
works, in general, is non-Gaussian due to the presence of
the output proportional term I'Y in the local field which
arises from the renormalization of the so-called naive
noise.

(3) The SCSNA is capable of dealing with the oc-
currence of the new type of phase transition as has been
found for transfer functions F™™,

(4) The Maxwell rule used in applying the SCSNA has
proved not only to be valid even for nonsigmoidal-type
transfer functions, but also to play a crucial role for the
occurrence of the new type of phase transition.

Regarding the network properties investigated, in the
case of the center-cutoff-type transfer function FM, we
note the following.

(1) The spin-glass state emerges from the paramagnetic
state through a first-order phase transition in the phase
diagram of a and 6, and there exists a certain small re-
gion of the retrieval phase in which the spin-glass state is
not allowed to coexist. This implies the reduction of the
number of spurious states associated with spin-glass
states.

(2) The behavior of the storage capacity with changing
0 is qualitatively the same as that of the analog networks
of a sigmoidal transfer function with changing analog
gain: 6 can be viewed as playing the role of the analog
gain.

(3) The effect of the self-couplings is to increase the
storage capacity within the maximum value of 0.138.

In the case of the end-cutoff-type transfer function
F™ we note the following.

(1) The networks exhibit a large enhancement of the
storage capacity o, such that with decreasing 6 from
6= 0, a, increases up to a maximum of =0.42 (6=0.7)
and afterwards decreases to vanish at 6=0.

(2) While the a,(0) with 6 % 1 can be determined by the
SCSNA as the upper bound of a ensuring the existence of
the retrieval solutions, the one with 6 <1 is given as the
value of a exhibiting the onset of instability of the re-
trieval solution of the SCSNA.

(3) The shape of the non-Gaussian distribution of the
local field depends crucially on the sign of T".

(4) When 6 < 1, the networks undergo a kind of phase
transition at a=a,(6), which arises from the disappear-
ance of the standard type of retrieval states with -0, as
the loading rate o is decreased from ca,. Below the
phase-transition point, the width of the local field distri-
bution V'ar vanishes and hence memory retrieval
without errors (g =1) is achieved.

(5) The effect of the self-couplings on the enhancement
of the storage capacity is conspicuous for small values of
0; the self-couplings increase the stability of the retrieval
solutions claimed by the SCSNA to suppress the oscilla-
tory instability present in the case of e=0. A part from
the problem of the appearance of spurious states, an op-
timum value of € exists for each 6 to maximize the
storage capacity.

(6) The self-couplings also modify the behavior of the
networks which is related to the occurrence of the new
type of phase transition, giving rise to an increase in the
critical loading rate a; for e<1. When €> 1, the phase
transition disappears.

The occurrence of the new type of phase transition due
to the vanishing of noise in the local fields implies that
perfect (errorless) memory retrieval is ensured even with
an extensive number of stored patterns under the local
learning rule of the Hebb type [34]. The phenomenon
will be generic for a certain class of transfer functions
giving rise to the occurrence of jumps in the renormal-
ized output function Y which results from the use of the
Maxwell rule as in the case of e <1 with F in (4.1) and
F_. in Fig. 9. Even in the case of the transfer function

o+s

F iy with a small & (>0), which destroys the errorless
memory retrieval states to bring about the »<0 phase for
a up to 28 (i.e., 0 <a <28), the » =07 phase still remains
to exist for the interval 28 <a <aqy(f), as long as &
satisfies 28 < a(0).

It is of interest to notice that the occurrence of the
transition with respect to noise in the local field is
affected considerably by the self-couplings and that
indeed for e€>1 the transition disappears. The present
study has revealed that in the case of e=1 with the
transfer function (4.1), the =07 phase below the transi-
tion point can be described by a certain limit of the solu-
tion of the order-parameter equations of the SCSNA.
The r=0" phase for € <1, on the other hand, can only be
partially understood based on the SCSNA (4.10); whereas
its property is well described by (4.10a) and (4.10b) alone,
the third equation (4.10c) remains inconsistent with those
two equations in the limit r —0 and U— — «. Exploring
the probabilistic structure of the r=0" phase as well as
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searching for a necessary and sufficient condition for the
existence of the transition are now under way.

An attempt to obtain a remarkable enhancement of the
storage capacity in Hopfield-type neural networks was
made previously based on networks with sparsely encod-
ed patterns [13,31,32]. The large enhancement of the
storage capacity found in the present study of the end-
cutoff-type transfer functions can be attributed to the
nonmonotonicity of the transfer function and hence of
the renormalized output Y(z). Recently, Morita, Yosh-
izawa, and Nakano [33(a)] and Morita [33(b)] suggested
use of nonmonotonic neurons to make such improve-
ments of the network performances as reduction of the
spurious states and enhancement of the storage capacity.
Using the systematic method of the SCSNA with the
nonmonotonic transfer functions of the end-cutoff-type,
we have obtained the results which are consistent with
their suggestion from numerical simulations. The present
work has paved the way to a systematic analysis leading
to a quantitative as well as qualitative understanding of
the mechanism of the enhancement of the storage capaci-
ty in the networks of nonmonotonic neurons. In fact,
taking advantage of the SCSNA which is available for a
wide class of transfer functions ensuring fixed-point-type
attractors for the updating dynamics (2.1), we can show
that in general a similar enhancement of the storage
capacity occurs in networks having nonmonotonic
transfer functions. Details of the study will be reported
elsewhere.

Finally we will comment on an attempt to exploit the
self-couplings aiming at the enhancement of the storage
capacity. Worth noting is the qualitative difference in the
effect of the self-couplings between the two types of
transfer functions, FM and FNM. The effect of the self-
couplings has turned out not to be of uniformity but to
depend substantially on the qualitative difference of the
transfer functions. One may consider that dealing with
the self-couplings does not make sense in physiological
nervous systems since a single neuron is not likely to ex-
tend a self-coupling to itself. However, it may be possible
that local clusters of neurons serve as functional units in
the information processing of those systems and thereby
local connections within the clusters give rise to feedback
loops representing effective self-couplings. In this case,
overall input-output relations of the clusters of neurons
will also possibly be represented by effective transfer
functions which can take a variety of shapes including
the one with nonmonotonicity. In artificial intelligence
engineering, on the other hand, it will be easy to imple-
ment the self-couplings on artificial neural network cir-
cuitries with rather arbitrary transfer functions in order
to achieve the enhancement of the storage capacity. The
present work has revealed that a combination of the in-
troduction of a certain amount of self-couplings and the
use of appropriately chosen transfer functions gives rise
to a promising expectation of a considerable enhance-
ment of the storage capacity. Since a large amount of the
self-couplings deteriorates the network performance due
to an increase in the number of spurious states, a further
study will be required to evaluate the total effect of the
self-couplings on the network performances.
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APPENDIX A: DERIVATION
OF THE AGS RESULT USING THE SCSNA

For the sake of simplicity we assume a =0 for the
stored patterns. It was shown by means of the cavity
method in the spin-glass theory that equilibrium states of
the Ising spin neural networks of AGS with temperature
1/B can be equivalently described by the so-called TAP
equation with the Onsager reaction field term, which
should read [15]

N as;

S,=tanh IS, ———
275 T

B (A1)

with

1 N
=N § (A2)
The self-coupling related term of the local field of the
TAP equation (A1) is seen to just arise from the Onsager
reaction field

as;

1—B(1—gq) °

For the purpose of recovering the AGS result, it will
suffice to show I'=0. When applying the SCSNA to
(A1), one obtains I'Y, the output proportional term in the
local field, as the sum of the squeezed output yY [see
(2.19)] and the Onsager reaction field 4 ogp. Then it fol-
lows that

horp=—

r=%.——%_
K 1-B(1—q)

The renormalized output (2.28) is

Y(EV,Z)=tanh{B[EVm V+T+Zz+TY(EN,2)]} . (Ad)

(A3)

Since differentiation of (A4) with respect to Z yields

gg=B{sech2[/3(§‘”m(”+I+Z+FY)]} 1+rﬂl,
dz dz
(A5)
one has from (2.24) and (A2)
1—K=<<iY(E)>>
dz
=B(1—¢q)
+F<<[J’%sech2[[3’(§mm(1)+I+2‘+I‘Y)]>> .
z
(A6)

Substitution of (A3) yields
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rx=o, (A7)
with
X=«Bﬂsechz[ﬁ(g‘”m‘”+I+z+rY)]>>
dz
~K(1-pU=q)] (A8)
a

Assuming X0, one obtains I'=0.

APPENDIX B: DERIVATION OF THE SET
OF EQUATIONS DESCRIBING THE r =01 PHASE
WITH e=1 AS WELL AS (4.29)

We present a systematic derivation of (4.29) on the
basis of the SCSNA order-parameter equations (2.30) and
show that the retrieval phase below the transition point
a, (i.e., ¥=07 phase) can be properly described by taking
the limit r -0+ of the SCSNA equations in the case of
e=1.

Suppose the transfer function F to be given by the
F,:s. The renormalized output Y(z) in the case of

0 <T <0 then is readily solved as
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0, z<z;, z4,<z
—(6+8)—m—Varz y <z<z
' +28 > A 2
Y(z)={0+8—m—Varz
T +28 , 23<z<z, (Bla)
—1, z,<z<z
1, zp<z<zy,
with
z9=—2
0 ‘/a_r ’
5 = —(0+8)—m
1 ‘/_C;
_ —(6—8)+T"—m
ZZ ‘/E > (Blb)
7= 0—6—T—m
3 ‘/_C;
;= 0+6—m
4 ‘/; .

The SCSNA order-parameter equations (2.30) for the
Y(z) take the form

—(6+8)—m 0+5—m
= C+26 N[szz]_N[22,20]+N[20,23]+—FKN[Z3,Z4]
Var _ (e—z§/2+eaz§/2_e—z%/z_e—zg/z) , (B2a)
(C+28)V 27
+(0+8+m)? ar+(0+8—m)?
(1—UPr=NI[z,,20]+ Nlzg,23 ] + Nlzy,z,]+ Nlzy,z
[22,20] [20,23] (T +25) (21,2, ] (T +26) [23,24]
ar —22/2 —z22 —z2/2 —z2/2
+m(lle ! +z3e —2Z,e 2 —Zue 4 )
_2Var(8+8+m) -2 2, 2Var(6+6—m) —4n_ A, (B2b)
(C+28)*V2m (T +28)V2r ’
— Var 2 -2
UVar == 0 (Nlz12, 14 Nizy 2D+ e (B2c)
[
We consider taking the limit §— +0 of the above set of lim 25 _ A (B3d)
equations. Then, it is expected that r — +0, when a = a,, 5—0 Var )
Following the same line of reasoning as in deriving (4.26),
we assume Noting (1—U)’r=a?/T? and taking the limit

girr%)(9+8—m)=o , (B3a)
8lllr:)z“=z4 , (B3b)
. . 20+T

— =1 — =1}
glir%)(z‘; z3) Lim Var w, (B3c)

together with

86— +0 of (B2) with use of the above relations, one ob-
tains the set of equations for 2,,®, and A:

A

A ~ z A A
N[—oo,z4—w]+74N[z4—l’l\J,24]
7]

6

1 (e —23/2_8 *(24*1’4‘))2/2)
2N b
OV 2

(B4a)
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o PO © =~ S
( 2 =N[—oo,z4——w]+—A—2—N[z4—w,Z4]
w— i
1 o 022 —22,2
@2‘/57;[(24_“-’) ¢ T Z4 7
22, —3252  —(z,—-0)?2
+ —(e Y T— 4 ), (B4b)
V27w
A_ak =—%N[Z:-L/l\),2:] (B4c)
w— i)

We see that combining (B4b) and (B4c) together with
rewriting z: and @ as z, and w yields (4.29). Equations
(B4) describe the retrieval state without errors (i.e.,
r=0%) for a<a,. In other words, the spin-glass order
parameter

-
(D —A)?

and the renormalized output Y(z) can be determined
from the solution of (B4). As is described in text, (B4)
yields its solution only for a =< «,

q ’ (BS)
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